写一个使用自定义MDPD数据集在d3rlpy库上的离线强化学习代码
时间: 2023-06-19 09:03:52 浏览: 89
好的,下面是一个使用自定义 MDPD 数据集在 d3rlpy 库上进行离线强化学习的示例代码。
首先,我们需要安装 d3rlpy 库和其依赖项:
```python
!pip install d3rlpy
!pip install gym
```
接下来,我们需要定义自己的 MDP 数据集。在这里,我们将使用 OpenAI Gym 中的 CartPole-v1 环境作为示例。
```python
import gym
class CartpoleDataset:
def __init__(self, env_name):
self.env = gym.make(env_name)
def get_episode(self, max_steps):
obs = self.env.reset()
done = False
steps = 0
episode = []
while not done and steps < max_steps:
action = self.env.action_space.sample()
next_obs, reward, done, _ = self.env.step(action)
episode.append({
'observation': obs,
'action': action,
'reward': reward,
'next_observation': next_obs,
'terminal': done
})
obs = next_obs
steps += 1
return episode
def get_dataset(self, n_episodes, max_steps):
dataset = []
for i in range(n_episodes):
episode = self.get_episode(max_steps)
dataset += episode
return dataset
```
现在,我们可以使用自定义的 MDP 数据集来训练一个 D4PG 模型:
```python
import torch
from d3rlpy.algos import D4PG
from d3rlpy.datasets import MDPDataset
from d3rlpy.metrics.scorer import evaluate_on_environment
from d3rlpy.models.encoders import VectorEncoderFactory
from d3rlpy.models.torch.q_functions import MeanQFunction
from d3rlpy.preprocessing import Scaler
from d3rlpy.online.buffers import ReplayBuffer
# create Cartpole dataset
dataset = CartpoleDataset('CartPole-v1')
data = dataset.get_dataset(100, 100)
# create MDP dataset
mdp_data = MDPDataset(data, gamma=0.99, n_steps=1)
# create buffer and scaler
buffer = ReplayBuffer(10000)
scaler = Scaler()
# populate buffer and scale data
buffer.extend(mdp_data)
scaler.fit(buffer.get_all_transitions())
buffer.update_all_transitions(scaler)
# create encoder and q-function
encoder = VectorEncoderFactory([64, 64])
q_func = MeanQFunction(encoder, n_action_samples=10)
# create D4PG algorithm
d4pg = D4PG(q_func,
scaler,
buffer,
learning_rate=1e-3,
actor_learning_rate=1e-3,
batch_size=32,
n_frames=1,
n_steps=1,
use_gpu=torch.cuda.is_available(),
actor_optim_factory=torch.optim.Adam,
critic_optim_factory=torch.optim.Adam)
# start training
d4pg.fit(1000, 1000)
# evaluate on environment
env = gym.make('CartPole-v1')
score = evaluate_on_environment(env, d4pg)
print('Score:', score)
```
这里我们使用了 D4PG 算法,将自定义的 MDP 数据集转换成了 d3rlpy 的 MDP 数据集,然后使用 D4PG 算法进行离线强化学习。在训练完成后,我们使用 Gym 环境测试模型的性能。
注意,这只是一个简单的示例代码,实际应用中需要根据自己的数据集和问题进行适当的修改和调整。
阅读全文