写一个MATLAB里粒子群算法优化LSTM回归预测的代码
时间: 2023-10-19 12:12:18 浏览: 97
好的,以下是MATLAB里粒子群优化LSTM回归预测的代码:
首先,导入数据并进行预处理:
```
data = xlsread('data.xlsx');
trainData = data(1:200, :);
testData = data(201:end, :);
% 归一化处理
[trainData, PS] = mapminmax(trainData');
trainData = trainData';
testData = mapminmax.apply(testData', PS)';
test_X = testData(:, 1:end-1);
test_Y = testData(:, end);
% 把训练数据分割成一系列的窗口
windowSize = 10;
X = [];
Y = [];
for i = 1:size(trainData, 1)-windowSize
x = trainData(i:i+windowSize-1, 1:end-1);
y = trainData(i+windowSize, end);
X = [X x];
Y = [Y y];
end
```
然后,定义LSTM模型:
```
inputSize = windowSize*size(trainData, 2)-1;
outputSize = 1;
numHiddenUnits = 10;
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits, 'OutputMode', 'last')
fullyConnectedLayer(outputSize)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 32, ...
'GradientThreshold', 1, ...
'Shuffle', 'every-epoch', ...
'ValidationData', {test_X, test_Y}, ...
'ValidationFrequency', 10, ...
'Plots', 'training-progress');
```
接下来,定义适应度函数:
```
function fitness = fitnessFunction(x)
net = trainLSTM(x);
yPred = predict(net, X);
fitness = rmse(Y, yPred);
end
function net = trainLSTM(x)
layers = [ ...
sequenceInputLayer(inputSize)
lstmLayer(x(1), 'OutputMode', 'last')
fullyConnectedLayer(outputSize)
regressionLayer];
options = trainingOptions('adam', ...
'MaxEpochs', 50, ...
'MiniBatchSize', 32, ...
'GradientThreshold', 1, ...
'Shuffle', 'every-epoch');
net = trainNetwork(X, Y, layers, options);
end
function rmse = rmse(y_true, y_pred)
rmse = sqrt(mean((y_true-y_pred).^2));
end
```
最后,定义粒子群算法:
```
% 参数
nParticles = 10;
nIterations = 20;
nVariables = 1;
minVelocity = -0.5;
maxVelocity = 0.5;
minPosition = 1;
maxPosition = 100;
% 初始化粒子群
particles = struct();
for i = 1:nParticles
particles(i).position = randi([minPosition maxPosition], 1);
particles(i).velocity = rand(1) * (maxVelocity - minVelocity) + minVelocity;
particles(i).bestPosition = particles(i).position;
particles(i).bestFitness = inf;
end
globalBestPosition = inf;
globalBestFitness = inf;
% 粒子群算法
for i = 1:nIterations
% 计算适应度函数
for j = 1:nParticles
fitnessValue = fitnessFunction(particles(j).position);
if fitnessValue < particles(j).bestFitness
particles(j).bestFitness = fitnessValue;
particles(j).bestPosition = particles(j).position;
end
if fitnessValue < globalBestFitness
globalBestFitness = fitnessValue;
globalBestPosition = particles(j).position;
end
end
% 更新速度和位置
for j = 1:nParticles
particles(j).velocity = particles(j).velocity ...
+ rand(1) * (particles(j).bestPosition - particles(j).position) ...
+ rand(1) * (globalBestPosition - particles(j).position);
particles(j).velocity = max(particles(j).velocity, minVelocity);
particles(j).velocity = min(particles(j).velocity, maxVelocity);
particles(j).position = particles(j).position + particles(j).velocity;
particles(j).position = max(particles(j).position, minPosition);
particles(j).position = min(particles(j).position, maxPosition);
end
end
% 训练最佳LSTM模型
optimalNumHiddenUnits = globalBestPosition;
optimalNet = trainLSTM(optimalNumHiddenUnits);
% 预测测试集并计算RMSE
yPred = predict(optimalNet, test_X);
rmseValue = rmse(test_Y, yPred);
```
这就是MATLAB里粒子群优化LSTM回归预测的代码,可以根据实际情况进行修改和优化。
阅读全文