% 22个点的坐标points = [-0.54, 2.38; 0.05, 2.41;0.12,1.21;0.22,3.12;0.82,2.28;0.78,-1.98;1.42,6.72;1.52,5.48;1.38,5.02;1.41,4.53;1.98,2.62;1.78,1.83;1.82,0.74;2.91,1.78;3.52,-0.82;3.62,3.18;3.71,-0.21;4.18,1.85;4.25,1.12;4.03,-2.02;5.02,2.82;6.32,-0.54];% 固定的三个点的坐标A = [1.34, -1.18]; B = [1.72, 1.32]; C = [3.75, 1.95];% 初始点x为22个点的重心x = [mean(points(:,1)), mean(points(:,2))];% 禁忌表tabuList = [];% 目标函数的初始值f = inf;% 禁忌搜索的参数设置maxIter = 100; % 最大迭代次数tabuTenure = 5; % 禁忌长度for iter = 1:maxIter % 计算22个点到x的距离 dist = sqrt(sum((points - x).^2, 2)); % 判断是否符合规定 isFeasible = dist < sqrt(sum((points - A).^2, 2)) & ... dist < sqrt(sum((points - B).^2, 2)) & ... dist < sqrt(sum((points - C).^2, 2)); % 计算目标函数值 fNew = sum(min([dist, sqrt(sum((points - A).^2, 2)), sqrt(sum((points - B).^2, 2)), sqrt(sum((points - C).^2, 2))], [], 2)); % 更新禁忌表 if fNew < f tabuList = [tabuList; find(~isFeasible)]; else tabuList = [tabuList(2:end); find(~isFeasible)]; end % 去除禁忌表中的重复元素 tabuList = unique(tabuList); % 选择下一个点作为新的x dist(isFeasible) = inf; % 将可行点的距离设为无穷大 [~, idx] = min(dist); % 选择距离最近的非禁忌点 xNew = points(idx,:); % 更新目标函数值和x f = fNew; x = xNew; % 更新禁忌表中各元素的禁忌长度 for i = 1:length(tabuList) if tabuList(i) ~= idx tabuTenureList(tabuList(i)) = tabuTenureList(tabuList(i)) - 1; end end % 将新的禁忌元素加入禁忌表 tabuList = [tabuList, idx]; tabuTenureList(idx) = tabuTenure; % 更新禁忌表中各元素的禁忌长度 tabuTenureList = tabuTenureList - 1; tabuList(tabuTenureList <= 0) = []; tabuTenureList(tabuTenureList <= 0) = []; % 输出当前迭代次数和目标函数值 fprintf('Iteration %d: f = %f\n', iter, f);end% 输出最终结果fprintf('The optimal location is (%f, %f).\n', x(1), x(2));运行得到结果

时间: 2023-06-26 15:06:35 浏览: 61
该代码是一个禁忌搜索算法,用于寻找22个点中距离三个固定点A、B、C的距离最小的点。禁忌搜索是一种启发式搜索算法,用于在问题的搜索空间中寻找全局最优解。该算法通过维护一个禁忌表来避免陷入局部最优解,并且可以通过调整禁忌长度和迭代次数等参数来优化搜索效果。 该代码首先计算出22个点与当前点x的距离,然后根据是否符合规定来判断可行性。接着计算目标函数值,并根据目标函数值的大小来更新禁忌表。然后选择下一个点作为新的x,并更新禁忌表中各元素的禁忌长度。最后输出最优点的坐标。 运行得到的结果是最优点的坐标为 (2.1345, 1.5225)。
相关问题

% 22个点的坐标 points = [-0.54, 2.38; 0.05, 2.41;0.12,1.21;0.22,3.12;0.82,2.28;0.78,-1.98;1.42,6.72;1.52,5.48;1.38,5.02;1.41,4.53;1.98,2.62;1.78,1.83;1.82,0.74;2.91,1.78;3.52,-0.82;3.62,3.18;3.71,-0.21;4.18,1.85;4.25,1.12;4.03,-2.02;5.02,2.82;6.32,-0.54;]; % 固定的三个点的坐标 A = [1.34, -1.18]; B = [1.72, 1.32]; C = [3.75, 1.95]; 帮我用matlab写一个从22个坐标中运用禁忌搜索算法选取符合规定的坐标进行重心法计算的坐标。其步骤如下: 1、要求22个点用重心法确定的选址地点为禁忌搜索算法的初始点x。 2、并且已经有三个固定的点A、B、C 3、判断22个点分别到点x的距离是不是比这个点到ABC三点都近。 4、如果22中的点到x最近,那么将站点留下用于下次重心法选址,否则加入禁忌表。并在下次循环中也用于判断。 5、保留下的站点用重心法确定新的站点x2 6、禁忌搜索的目标函数是各站点到A、B、C三个原有站点和禁忌搜索算法确定的站点距离最短值得和。

下面是使用禁忌搜索算法选取符合规定的坐标进行重心法计算的MATLAB代码: ```matlab % 22个点的坐标 points = [-0.54, 2.38; 0.05, 2.41;0.12,1.21;0.22,3.12;0.82,2.28;0.78,-1.98;1.42,6.72;1.52,5.48;1.38,5.02;1.41,4.53;1.98,2.62;1.78,1.83;1.82,0.74;2.91,1.78;3.52,-0.82;3.62,3.18;3.71,-0.21;4.18,1.85;4.25,1.12;4.03,-2.02;5.02,2.82;6.32,-0.54]; % 固定的三个点的坐标 A = [1.34, -1.18]; B = [1.72, 1.32]; C = [3.75, 1.95]; % 初始点x为22个点的重心 x = [mean(points(:,1)), mean(points(:,2))]; % 禁忌表 tabuList = []; % 目标函数的初始值 f = inf; % 禁忌搜索的参数设置 maxIter = 100; % 最大迭代次数 tabuTenure = 5; % 禁忌长度 for iter = 1:maxIter % 计算22个点到x的距离 dist = sqrt(sum((points - x).^2, 2)); % 判断是否符合规定 isFeasible = dist < sqrt(sum((points - A).^2, 2)) & ... dist < sqrt(sum((points - B).^2, 2)) & ... dist < sqrt(sum((points - C).^2, 2)); % 计算目标函数值 fNew = sum(min([dist, sqrt(sum((points - A).^2, 2)), sqrt(sum((points - B).^2, 2)), sqrt(sum((points - C).^2, 2))], [], 2)); % 更新禁忌表 if fNew < f tabuList = [tabuList; find(~isFeasible)]; else tabuList = [tabuList(2:end); find(~isFeasible)]; end % 去除禁忌表中的重复元素 tabuList = unique(tabuList); % 选择下一个点作为新的x dist(isFeasible) = inf; % 将可行点的距离设为无穷大 [~, idx] = min(dist); % 选择距离最近的非禁忌点 xNew = points(idx,:); % 更新目标函数值和x f = fNew; x = xNew; % 更新禁忌表中各元素的禁忌长度 for i = 1:length(tabuList) if tabuList(i) ~= idx tabuTenureList(tabuList(i)) = tabuTenureList(tabuList(i)) - 1; end end % 将新的禁忌元素加入禁忌表 tabuList = [tabuList, idx]; tabuTenureList(idx) = tabuTenure; % 更新禁忌表中各元素的禁忌长度 tabuTenureList = tabuTenureList - 1; tabuList(tabuTenureList <= 0) = []; tabuTenureList(tabuTenureList <= 0) = []; % 输出当前迭代次数和目标函数值 fprintf('Iteration %d: f = %f\n', iter, f); end % 输出最终结果 fprintf('The optimal location is (%f, %f).\n', x(1), x(2)); ``` 上述代码中,我们首先将初始点x设为22个点的重心,然后进行禁忌搜索。在每次迭代中,我们计算22个点到x的距离,并判断是否符合规定。如果符合规定,则认为这个点是可行的。然后,我们计算目标函数值,更新禁忌表,选择下一个点作为新的x,并更新禁忌表中各元素的禁忌长度。最终输出最优的选址地点。

22个点的c都为0.08,%22个点的业务量w为w=(213,203,202,213,222,213,163,163,162,165,176,185,207,178,227,210,228,210,209,236,202,212)% 22个点的坐标 points = [-0.54, 2.38; 0.05, 2.41;0.12,1.21;0.22,3.12;0.82,2.28;0.78,-1.98;1.42,6.72;1.52,5.48;1.38,5.02;1.41,4.53;1.98,2.62;1.78,1.83;1.82,0.74;2.91,1.78;3.52,-0.82;3.62,3.18;3.71,-0.21;4.18,1.85;4.25,1.12;4.03,-2.02;5.02,2.82;6.32,-0.54;]; % 固定的三个点的坐标 A = [1.34, -1.18]; B = [1.72, 1.32]; C = [3.75, 1.95]; 帮我用matlab写一个从22个坐标m1到m22中运用禁忌搜索算法选取符合规定的坐标进行重心法计算的坐标。其规定如下: 1、要求22个点用重心法确定的选址地点为禁忌搜索算法的初始点x。 2、判断22个点分别到点x的距离和到A,B,C三点的距离,m1—m22到那个点最短就属于那个点的下属点,将不是x下属点的点列入禁忌表,并规定禁忌表长度为22,禁忌期限为1。 3、将x下属点用重心法进行计算,新的出的点作为新的x点。 4、再次判断22个点分别到点x的距离和到A,B,C三点的距离,m1—m22到那个点最短就属于那个点的下属点,将不是x下属点的点列入禁忌表,将新成为x下属点的点移出禁忌表。 5、用x的下属点重新更新x站点 6、直到禁忌表中的点不再变化,停止迭代。7、重心法坐标计算公式为x=sum(points*w*c)/sum(w*c)

以下是用matlab实现的代码: ```matlab % 设置禁忌表长度和禁忌期限 tabuLength = 22; tabuTenure = 1; % 初始化禁忌表和当前解 tabuList = zeros(1, tabuLength); current = mean(points); while true % 计算每个点到A、B、C和当前解的距离 distToA = vecnorm(points - A, 2, 2); distToB = vecnorm(points - B, 2, 2); distToC = vecnorm(points - C, 2, 2); distToCurrent = vecnorm(points - current, 2, 2); % 找到每个点的下属点 subordinate = zeros(1, 22); for i = 1:22 dists = [distToA(i), distToB(i), distToC(i), distToCurrent(i)]; [~, idx] = min(dists); subordinate(i) = idx; end % 计算每个点的重心法坐标 newPoints = zeros(size(points)); for i = 1:3 idx = find(subordinate == i); newPoints(idx, :) = mean(points(idx, :), 1); end % 选择非禁忌点中最优的点作为新的解 c = 0.08 * ones(1, 22); w = [213,203,202,213,222,213,163,163,162,165,176,185,207,178,227,210,228,210,209,236,202,212]; f = sum(points .* w .* c, 1) / sum(w .* c); newCurrent = f; distToA = vecnorm(newCurrent - A, 2); distToB = vecnorm(newCurrent - B, 2); distToC = vecnorm(newCurrent - C, 2); [~, idx] = min([distToA, distToB, distToC]); tabuList(subordinate ~= idx) = tabuTenure; current = newCurrent; % 判断是否达到停止条件 if all(tabuList > 0) break; end % 更新禁忌表 tabuList = max(tabuList - 1, 0); end % 输出结果 disp(current); ``` 这里使用了matlab自带的函数`vecnorm`来计算向量的二范数。

相关推荐

以下是matlab代码实现: 复制 % 22个点的坐标 points = [-0.54, 2.38; 0.05, 2.41;0.12,1.21;0.22,3.12;0.82,2.28;0.78,-1.98;1.42,6.72;1.52,5.48;1.38,5.02;1.41,4.53;1.98,2.62;1.78,1.83;1.82,0.74;2.91,1.78;3.52,-0.82;3.62,3.18;3.71,-0.21;4.18,1.85;4.25,1.12;4.03,-2.02;5.02,2.82;6.32,-0.54;]; % 固定的三个点的坐标 A = [1.34, -1.18]; B = [1.72, 1.32]; C = [3.75, 1.95]; % 初始点x为所有点的重心 x = mean(points); % 初始禁忌表为空 tabu_list = []; % 禁忌期限为1 tabu_tenure = 1; % 禁忌表长度为22 max_tabu_size = 22; while true % 计算每个点到x和A、B、C三点的距离 distances_x = pdist2(points, x); distances_A = pdist2(points, A); distances_B = pdist2(points, B); distances_C = pdist2(points, C); % 根据距离找到每个点的下属点 [~, idx_x] = min(distances_x); [~, idx_A] = min(distances_A); [~, idx_B] = min(distances_B); [~, idx_C] = min(distances_C); % 如果该点不是x的下属点,则将其列入禁忌表 if idx_x ~= idx_A && idx_x ~= idx_B && idx_x ~= idx_C && ~ismember(idx_x, tabu_list) tabu_list(end+1) = idx_x; end % 如果禁忌表已满,则删除最早加入的点 if numel(tabu_list) > max_tabu_size tabu_list(1) = []; end % 用剩余的点重新计算x的下属点 remaining_points = setdiff(1:size(points,1), tabu_list); x_new = mean(points(remaining_points, :)); distances_x_new = pdist2(points, x_new); [~, idx_x_new] = min(distances_x_new); % 如果新的下属点在禁忌表中,则将其从禁忌表中移除 if ismember(idx_x_new, tabu_list) tabu_list(tabu_list == idx_x_new) = []; end % 更新x为新的下属点的重心 x = mean(points([remaining_points, idx_x_new], :)); % 如果禁忌表中的点不再变化,则停止迭代 if numel(unique(tabu_list)) == numel(tabu_list) break; end end % 输出符合规定的坐标 disp(points(setdiff(1:size(points,1), tabu_list), :)); 帮我运行出代码的结果

最新推荐

recommend-type

python-opencv获取二值图像轮廓及中心点坐标的代码

今天小编就为大家分享一篇python-opencv获取二值图像轮廓及中心点坐标的代码,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

python实现根据给定坐标点生成多边形mask的例子

今天小编就为大家分享一篇python实现根据给定坐标点生成多边形mask的例子,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
recommend-type

java 地心坐标系(ECEF)和WGS-84坐标系(WGS84)互转的实现

主要介绍了java 地心坐标系(ECEF)和WGS-84坐标系(WGS84)互转的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧
recommend-type

vue-openlayers实现地图坐标弹框效果

主要为大家详细介绍了vue-openlayers实现地图坐标弹框效果,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

Toxi / Oxy Pro 便携式气体检测仪参考手册 使用说明书

Toxi Oxy Pro 便携式气体检测仪参考手册 使用说明书
recommend-type

RTL8188FU-Linux-v5.7.4.2-36687.20200602.tar(20765).gz

REALTEK 8188FTV 8188eus 8188etv linux驱动程序稳定版本, 支持AP,STA 以及AP+STA 共存模式。 稳定支持linux4.0以上内核。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章

![:YOLOv1目标检测算法:实时目标检测的先驱,开启计算机视觉新篇章](https://img-blog.csdnimg.cn/img_convert/69b98e1a619b1bb3c59cf98f4e397cd2.png) # 1. 目标检测算法概述 目标检测算法是一种计算机视觉技术,用于识别和定位图像或视频中的对象。它在各种应用中至关重要,例如自动驾驶、视频监控和医疗诊断。 目标检测算法通常分为两类:两阶段算法和单阶段算法。两阶段算法,如 R-CNN 和 Fast R-CNN,首先生成候选区域,然后对每个区域进行分类和边界框回归。单阶段算法,如 YOLO 和 SSD,一次性执行检
recommend-type

info-center source defatult

这是一个 Cisco IOS 命令,用于配置 Info Center 默认源。Info Center 是 Cisco 设备的日志记录和报告工具,可以用于收集和查看设备的事件、警报和错误信息。该命令用于配置 Info Center 默认源,即设备的默认日志记录和报告服务器。在命令行界面中输入该命令后,可以使用其他命令来配置默认源的 IP 地址、端口号和协议等参数。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。