使用theano实现3DCNN的非监督学习
时间: 2024-05-13 16:16:08 浏览: 125
图神经网络无监督学习
实现3DCNN的非监督学习,可以使用自编码器(Autoencoder)来实现。自编码器是一种无监督学习算法,可以用于特征提取和数据降维。
以下是使用Theano实现3DCNN自编码器的示例代码:
```python
import theano
import theano.tensor as T
import numpy as np
class ConvLayer(object):
def __init__(self, rng, input_shape, filter_shape, poolsize=(2, 2)):
fan_in = np.prod(filter_shape[1:])
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize))
w_bound = np.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(
np.asarray(
rng.uniform(low=-w_bound, high=w_bound, size=filter_shape),
dtype=theano.config.floatX
),
borrow=True
)
b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
self.input = T.dtensor5('input')
conv_out = T.nnet.conv3d(
input=self.input,
filters=self.W,
filter_shape=filter_shape,
input_shape=input_shape
)
pooled_out = T.signal.pool.pool_3d(
input=conv_out,
ws=poolsize,
ignore_border=True
)
self.output = T.tanh(pooled_out + self.b.dimshuffle('x', 0, 'x', 'x', 'x'))
self.params = [self.W, self.b]
class DeconvLayer(object):
def __init__(self, rng, input_shape, filter_shape, output_shape, poolsize=(2, 2)):
fan_in = np.prod(filter_shape[1:])
fan_out = (filter_shape[0] * np.prod(filter_shape[2:]) / np.prod(poolsize))
w_bound = np.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(
np.asarray(
rng.uniform(low=-w_bound, high=w_bound, size=filter_shape),
dtype=theano.config.floatX
),
borrow=True
)
b_values = np.zeros((filter_shape[1],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True)
self.input = T.dtensor5('input')
conv_out = T.nnet.abstract_conv.AbstractConv3d_gradInputs(
filters=self.W.dimshuffle(1, 0, 2, 3, 4),
output_grad=self.input,
input_shape=output_shape,
filter_shape=filter_shape,
border_mode='valid'
)
unpooled_out = T.signal.pool.pool_3d(
input=conv_out,
ws=poolsize,
ignore_border=True
)
self.output = T.tanh(unpooled_out + self.b.dimshuffle('x', 0, 'x', 'x', 'x'))
self.params = [self.W, self.b]
class AutoEncoder(object):
def __init__(self, input_shape, filter_sizes, pool_sizes):
rng = np.random.RandomState(1234)
self.encoder_layers = []
self.decoder_layers = []
self.params = []
layer_input_shape = input_shape
for filter_size, pool_size in zip(filter_sizes, pool_sizes):
encoder_layer = ConvLayer(rng=rng,
input_shape=layer_input_shape,
filter_shape=filter_size,
poolsize=pool_size)
self.encoder_layers.append(encoder_layer)
self.params += encoder_layer.params
layer_input_shape = (
layer_input_shape[0],
filter_size[0],
(layer_input_shape[2] - filter_size[2] + 1) // pool_size[0],
(layer_input_shape[3] - filter_size[3] + 1) // pool_size[1],
(layer_input_shape[4] - filter_size[4] + 1) // pool_size[2]
)
for filter_size, pool_size, encoder_layer in zip(filter_sizes[::-1][1:], pool_sizes[::-1][1:], self.encoder_layers[::-1][1:]):
decoder_layer = DeconvLayer(rng=rng,
input_shape=layer_input_shape,
filter_shape=filter_size,
output_shape=encoder_layer.output.shape,
poolsize=pool_size)
self.decoder_layers.append(decoder_layer)
self.params += decoder_layer.params
layer_input_shape = encoder_layer.output.shape
self.encode = theano.function(
[self.encoder_layers[0].input],
self.encoder_layers[-1].output
)
self.decode = theano.function(
[self.decoder_layers[0].input],
self.decoder_layers[-1].output
)
self.reconstruct = theano.function(
[self.encoder_layers[0].input],
self.decoder_layers[-1].output
)
x = self.encoder_layers[0].input
for layer in self.encoder_layers:
x = layer.output
self.encoder = theano.function(
[self.encoder_layers[0].input],
x
)
x = self.decoder_layers[0].input
for layer in self.decoder_layers:
x = layer.output
self.decoder = theano.function(
[self.decoder_layers[0].input],
x
)
self.params = list(set(self.params))
cost = T.mean((self.decoder_layers[-1].output - self.encoder_layers[0].input) ** 2)
gparams = T.grad(cost, self.params)
updates = [(param, param - 0.01 * gparam) for param, gparam in zip(self.params, gparams)]
self.train = theano.function(
[self.encoder_layers[0].input],
cost,
updates=updates
)
if __name__ == '__main__':
input_shape = (10, 1, 64, 64, 64)
filter_sizes = [(32, 1, 3, 3, 3), (64, 32, 3, 3, 3), (128, 64, 3, 3, 3)]
pool_sizes = [(2, 2, 2), (2, 2, 2), (2, 2, 2)]
ae = AutoEncoder(input_shape, filter_sizes, pool_sizes)
```
该代码实现了一个带有三个卷积层和三个反卷积层的3D自编码器,用于对输入数据进行特征提取和降维。您可以根据需要更改输入形状、卷积层和反卷积层的数量和大小,以适应您的应用场景。
阅读全文