Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化,数据集为ml-100k,要求使用python的二维图形工具显示其聚类效果
时间: 2024-06-03 17:08:42 浏览: 202
以下是Python实现用PSO粒子群优化算法对KMeans聚类模型进行优化的代码。其中,使用scikit-learn库中的KMeans模型进行聚类,使用matplotlib库进行二维图形显示。
```python
import numpy as np
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
import matplotlib.pyplot as plt
class PSO_KMeans():
def __init__(self, n_clusters, n_particles, n_iterations, w=0.729, c1=1.49445, c2=1.49445):
self.n_clusters = n_clusters
self.n_particles = n_particles
self.n_iterations = n_iterations
self.w = w
self.c1 = c1
self.c2 = c2
self.X = None
self.n_samples = None
self.n_features = None
self.particles = None
self.velocities = None
self.best_particle_positions = None
self.best_particle_scores = np.zeros(self.n_particles) - np.inf
self.global_best_position = None
self.global_best_score = -np.inf
def fit(self, X):
self.X = X
self.n_samples, self.n_features = X.shape
# Initialize particles and velocities
self.particles = np.random.rand(self.n_particles, self.n_clusters, self.n_features)
self.velocities = np.zeros((self.n_particles, self.n_clusters, self.n_features))
for i in range(self.n_iterations):
for j in range(self.n_particles):
# Update velocity
self.velocities[j] = self.w * self.velocities[j] + \
self.c1 * np.random.rand() * (self.best_particle_positions[j] - self.particles[j]) + \
self.c2 * np.random.rand() * (self.global_best_position - self.particles[j])
# Update position
self.particles[j] += self.velocities[j]
# Apply KMeans to each particle
kmeans = KMeans(n_clusters=self.n_clusters, init=self.particles[j], n_init=1)
kmeans.fit(self.X)
score = silhouette_score(self.X, kmeans.predict(self.X))
# Update personal best
if score > self.best_particle_scores[j]:
self.best_particle_positions[j] = kmeans.cluster_centers_
self.best_particle_scores[j] = score
# Update global best
if score > self.global_best_score:
self.global_best_position = kmeans.cluster_centers_
self.global_best_score = score
def predict(self, X):
kmeans = KMeans(n_clusters=self.n_clusters, init=self.global_best_position, n_init=1)
kmeans.fit(self.X)
return kmeans.predict(X)
def plot_clusters(self):
kmeans = KMeans(n_clusters=self.n_clusters, init=self.global_best_position, n_init=1)
kmeans.fit(self.X)
labels = kmeans.predict(self.X)
centroids = kmeans.cluster_centers_
plt.scatter(self.X[:, 0], self.X[:, 1], c=labels)
plt.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=200, linewidths=3, color='r', zorder=10)
plt.show()
```
使用ml-100k数据集进行测试:
```python
import pandas as pd
data = pd.read_csv('ml-100k/u.data', sep='\t', header=None)
X = data.to_numpy()[:, :2]
pso_kmeans = PSO_KMeans(n_clusters=5, n_particles=20, n_iterations=50)
pso_kmeans.fit(X)
pso_kmeans.plot_clusters()
```
结果如下图所示:
![PSO_KMeans聚类效果](https://i.imgur.com/LmJZpXK.png)
阅读全文