geotools 通过栅格重采样改变图像像素
时间: 2023-08-24 16:06:27 浏览: 324
是的,GeoTools可以通过栅格重采样(Raster Resampling)的方式来改变栅格数据的像素分辨率。在GeoTools中,可以使用ResampleProcess类来进行栅格重采样操作。该类提供了多种重采样方法,包括最近邻插值(Nearest Neighbor)、双线性插值(Bilinear)、三次卷积插值(Cubic Convolution)等。
例如,以下代码可以将一个GeoTIFF格式的栅格数据进行双线性插值重采样,将像素分辨率从原来的0.01度变为0.05度:
```
File input = new File("input.tif");
File output = new File("output.tif");
double[] targetRes = new double[] {0.05, 0.05};
ResampleProcess process = new ResampleProcess(input, output, targetRes, ResampleProcess.ResampleMethod.BILINEAR);
process.execute();
```
需要注意的是,栅格重采样可能会改变原始数据的特征和精度,因此需要谨慎使用。
相关问题
geotools resample时像素变得过大 怎么控制
在 Geotools 中进行重采样时,由于源图像和目标图像的分辨率不同,可能会导致像素变大或变小。为了控制像素大小,可以使用 Geotools 提供的重采样器对象进行设置。以下是一个示例代码,可以将源图像重采样为目标图像,同时控制像素大小。
```java
import org.geotools.coverage.grid.GridCoverage2D;
import org.geotools.coverage.processing.AbstractProcessor;
import org.geotools.coverage.processing.CoverageProcessor;
import org.geotools.factory.Hints;
import org.geotools.gce.arcgrid.ArcGridWriter;
import org.geotools.gce.arcgrid.ArcGridWriterFactory;
import org.geotools.gce.geotiff.GeoTiffWriter;
import org.geotools.gce.geotiff.GeoTiffWriter2;
import org.geotools.geometry.jts.ReferencedEnvelope;
import org.geotools.referencing.CRS;
import org.geotools.referencing.crs.DefaultGeographicCRS;
import org.geotools.referencing.operation.DefaultMathTransformFactory;
import org.geotools.referencing.operation.transform.AffineTransform2D;
import org.geotools.resample.ResampleProcess;
import org.geotools.util.factory.Hints;
import org.opengis.parameter.GeneralParameterValue;
import org.opengis.parameter.ParameterValueGroup;
import org.opengis.referencing.crs.CoordinateReferenceSystem;
import javax.media.jai.Interpolation;
import java.awt.geom.AffineTransform;
import java.awt.image.BufferedImage;
import java.io.File;
import java.util.HashMap;
import java.util.Map;
public class ResampleImage {
public static void main(String[] args) throws Exception {
File sourceFile = new File("/path/to/source/raster.tif");
File targetFile = new File("/path/to/target/raster.tif");
// 加载源图像
GridCoverage2D sourceCoverage = loadGridCoverage(sourceFile);
// 目标图像的分辨率(像素大小)
double targetPixelSize = 10.0;
// 计算目标图像的宽度和高度
int targetWidth = (int) Math.round(sourceCoverage.getEnvelope().getWidth() / targetPixelSize);
int targetHeight = (int) Math.round(sourceCoverage.getEnvelope().getHeight() / targetPixelSize);
// 目标图像的范围和分辨率
CoordinateReferenceSystem targetCRS = DefaultGeographicCRS.WGS84;
ReferencedEnvelope targetEnvelope = new ReferencedEnvelope(sourceCoverage.getEnvelope().getMinimum(0),
sourceCoverage.getEnvelope().getMaximum(0), sourceCoverage.getEnvelope().getMinimum(1),
sourceCoverage.getEnvelope().getMaximum(1), targetCRS);
double[] targetResolution = { targetPixelSize, targetPixelSize };
// 创建目标图像
GridCoverage2D targetCoverage = createGridCoverage(targetWidth, targetHeight, targetEnvelope, targetResolution,
targetCRS);
// 创建重采样器
ResampleProcess resampleProcess = new ResampleProcess();
ParameterValueGroup params = resampleProcess.getParameters();
params.parameter("Source").setValue(sourceCoverage);
params.parameter("Destination").setValue(targetCoverage);
params.parameter("InterpolationType").setValue(Interpolation.INTERP_BICUBIC);
CoverageProcessor coverageProcessor = new CoverageProcessor(new Hints(Hints.FORCE_LONGITUDE_FIRST_AXIS_ORDER,
Boolean.TRUE));
coverageProcessor.addCoverageProcessor(resampleProcess);
GridCoverage2D resampledCoverage = (GridCoverage2D) coverageProcessor.doOperation(params);
// 写入目标图像
writeGridCoverage(resampledCoverage, targetFile);
}
public static GridCoverage2D loadGridCoverage(File file) throws Exception {
// 加载栅格文件
Map<String, Object> loadParams = new HashMap<>();
loadParams.put("url", file.toURI().toURL());
GridCoverage2D coverage = (GridCoverage2D) new ArcGridReader().read(loadParams);
return coverage;
}
public static GridCoverage2D createGridCoverage(int width, int height, ReferencedEnvelope envelope,
double[] resolution, CoordinateReferenceSystem crs) throws Exception {
// 创建栅格文件
BufferedImage bufferedImage = new BufferedImage(width, height, BufferedImage.TYPE_USHORT_GRAY);
double[] matrix = new double[] { resolution[0], 0, 0, -resolution[1], envelope.getMinX(), envelope.getMaxY() };
AffineTransform2D gridToWorld = new AffineTransform2D(matrix);
GridCoverageFactory factory = new GridCoverageFactory();
GridCoverage2D coverage = factory.create("Coverage", bufferedImage, envelope);
coverage = (GridCoverage2D) Operations.DEFAULT.resample(coverage, gridToWorld, Interpolation.INTERP_BICUBIC);
return coverage;
}
public static void writeGridCoverage(GridCoverage2D coverage, File file) throws Exception {
// 写入栅格文件
Map<String, Object> saveParams = new HashMap<>();
saveParams.put("url", file.toURI().toURL());
saveParams.put("gridsize", coverage.getRenderedImage().getData().getWidth());
saveParams.put("writeGeoTIFFTags", true);
saveParams.put("forceBigTiff", true);
ArcGridWriterFactory writerFactory = new ArcGridWriterFactory();
ArcGridWriter writer = (ArcGridWriter) writerFactory.createWriter(saveParams);
writer.write(coverage, saveParams);
}
}
```
在这个示例中,我们首先加载源图像,然后根据目标图像的分辨率计算目标图像的宽度和高度。接下来,我们创建目标图像的范围和分辨率,并使用它们创建目标图像。然后,我们使用重采样器进行重采样,并将结果写入目标图像文件。
注意,在创建目标图像时,我们使用了一个 AffineTransform2D 对象来将网格坐标映射到世界坐标。通过调整这个对象的矩阵,可以控制像素的大小。在本示例中,我们将像素大小设置为目标图像的分辨率。
如果您需要进一步控制像素大小,可以根据需要调整 AffineTransform2D 对象的矩阵。同时,您还可以尝试使用不同的重采样算法,以获得更好的结果。
阅读全文