将上面的代码优化,要求可自定义选择半方差函数模型(如球状模型,高斯模型,指数模型)
时间: 2024-02-28 18:57:07 浏览: 40
以下是一个可自定义选择半方差函数模型的优化版本的MATLAB源代码:
```
function [z] = ordinary_kriging(x,y,z,xx,yy,model)
% 计算距离矩阵
n = length(x);
D = zeros(n,n);
for i = 1:n
for j = i+1:n
D(i,j) = sqrt((x(i)-x(j))^2 + (y(i)-y(j))^2);
D(j,i) = D(i,j);
end
end
% 计算半方差函数
h = D(:);
z = z(:);
dh = max(h)/30;
distance = 0:dh:max(h);
n_distance = length(distance);
variance = zeros(n_distance,1);
for i=1:n_distance
ix = find(h >= distance(i)-dh & h < distance(i)+dh);
if isempty(ix)
variance(i) = NaN;
else
variance(i) = var(z(ix));
end
end
% 拟合半方差函数
switch model
case 'spherical'
[p,s] = polyfit(distance(~isnan(variance)),variance(~isnan(variance)),2);
C0 = s.normr^2/length(variance);
a = p(1);
r = -p(2)/(2*a);
case 'exponential'
[p,s] = polyfit(distance(~isnan(variance)),log(variance(~isnan(variance))),1);
C0 = s.normr^2/length(variance);
r = -1/p(1);
case 'gaussian'
[p,s] = polyfit(distance(~isnan(variance)),log(variance(~isnan(variance))),2);
C0 = s.normr^2/length(variance);
r = sqrt(-1/p(2));
end
% 预测插值点的值
n_new = length(xx);
z_new = zeros(n_new,1);
for i = 1:n_new
d_new = sqrt((x-xx(i)).^2 + (y-yy(i)).^2);
switch model
case 'spherical'
k_new = C0 + a*(1.5*d_new/r - 0.5*(d_new/r).^3).*(d_new<=r) + a*(d_new/r).*(d_new>r);
case 'exponential'
k_new = C0 + exp(-d_new/r);
case 'gaussian'
k_new = C0 + exp(-(d_new/r).^2);
end
k_new = k_new(~isnan(k_new));
z_new(i) = sum(k_new.*z(~isnan(k_new))) / sum(k_new);
end
% 输出结果
z = z_new;
```
在此代码中,我们首先计算了所有插值点之间的距离矩阵,并计算了每个距离的半方差函数。然后,我们根据用户选择的模型来拟合半方差函数,并使用插值点的坐标和半方差函数来预测每个插值点的值。最后,我们输出预测结果。请注意,此代码可能需要根据您的数据进行修改。
阅读全文