计算两组图片之间fid指标的代码
时间: 2023-11-22 10:55:02 浏览: 204
FID IS评价指标 2024
计算两组图片之间FID指标需要使用两个步骤:首先计算每组图片的特征向量,然后计算它们之间的FID距离。以下是一个Python代码示例,使用PyTorch和NumPy库实现:
```python
import torch
import numpy as np
from scipy import linalg
def calculate_activation_statistics(images, model, batch_size=50, dims=2048):
model.eval()
act = np.empty((len(images), dims))
start_idx = 0
while start_idx < len(images):
end_idx = min(start_idx + batch_size, len(images))
batch = torch.stack(images[start_idx:end_idx]).cuda()
with torch.no_grad():
pred = model(batch)[0].squeeze(2).squeeze(2).cpu().numpy()
act[start_idx:end_idx] = pred
start_idx += batch_size
mu = np.mean(act, axis=0)
sigma = np.cov(act, rowvar=False)
return mu, sigma
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6):
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, 'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, 'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = f'fid calculation produces singular product; adding {eps} to diagonal of cov estimates'
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError(f'Imaginary component {m}')
covmean = covmean.real
tr_covmean = np.trace(covmean)
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
def calculate_fid(images1, images2, model, batch_size=50, dims=2048):
block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[dims]
model = InceptionV3([block_idx]).cuda()
mu1, sigma1 = calculate_activation_statistics(images1, model, batch_size, dims)
mu2, sigma2 = calculate_activation_statistics(images2, model, batch_size, dims)
fid = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
return fid
```
其中`calculate_activation_statistics`函数计算图片集合的特征向量的均值和协方差矩阵,`calculate_frechet_distance`函数计算两个特征向量集合之间的FID距离,`calculate_fid`函数将前两个函数组合起来计算FID指标。您需要将`images1`和`images2`替换为两个图片集合的路径或张量列表,`model`替换为一个预训练的ImageNet分类模型(例如Inception V3),`batch_size`和`dims`为可选参数,分别表示每批次的图像数量和特征向量的维度。
阅读全文