请优化(不是并行化,而是从cache、函数调用开销、编译等方面优化)下面的串行程序,测试每个优化措施的效果。用Linux环境,编译器不限(gcc,icc等都可以)。以报告形式上传。 #include <stdio.h> #include <stdlib.h> #include <math.h> #define M 1500 #define NM 2000 #define N 2500 void generate_matrix(double *A, long m, long n) { long i, j; for (i=0; i<m; i++) for (j=0; j<n; j++) { A[i*n + j] = rand()/(RAND_MAX+1.0); //0 - 1 A[i*n + j] = 2*A[i*n + j] - 1; //-1 - +1 } } double handle_data(double data) { return sqrt(fabs(data)); } void handle_matrix(double *A, double *B, double *C, long m, long nm, long n) { long i, j, k; double s; for (i=0; i<m; i++) { for (j=0; j<n; j++) { s = 0; for (k=0; k<nm; k++) s += A[i*nm + k] * B[k*n + j]; C[i*n + j] = handle_data(s); } } } double sum_matrix(double *A, long m, long n) { long i, j; double s = 0; for (i=0; i<m; i++) for (j=0; j<n; j++) s += A[i*n + j]; return s; } int main() { double *A = (double *)malloc(M * NM * sizeof(double)); double *B = (double *)malloc(NM * N * sizeof(double)); double *C = (double *)malloc(M * N * sizeof(double)); generate_matrix(A, M, NM); generate_matrix(B, NM, N); struct timeval begin_time, end_time; double run_time_ms; gettimeofday(&begin_time); handle_matrix(A, B, C, M, NM, N); gettimeofday(&end_time); run_time_ms = (end_time.tv_sec - begin_time.tv_sec)*1000 + (end_time.tv_usec - begin_time.tv_usec)*1.0/1000; printf("run_time = %lfms\n", run_time_ms); printf("Sum = %.4f\n", sum_matrix(C, M, N)); free(A); free(B); free(C); return 0; }

时间: 2023-05-24 10:06:51 浏览: 40
这个问题实际上是一个要求优化串行程序的任务。需要从不同的角度考虑优化,包括cache、函数调用开销和编译等方面。在处理过程中需要测试每个优化措施的效果,并用Linux环境和不同的编译器进行编译。最后需要形成一个报告,详细说明优化的过程和结果,以及优化所使用的方法和工具。
相关问题

请优化(不是并行化,而是从cache、函数调用开销、编译等方面优化)下面的串行程序,测试每个优化措施的效果。用Linux环境,编译器不限(gcc,icc等都可以)。

由于没有具体的代码,我无法为您提供针对性的优化建议。但是下面是一些常见的优化方法,您可以根据代码的具体情况进行选择和尝试: 1. 缓存优化:使用缓存来减少内存访问的次数,比如尽量使用局部变量,避免频繁地访问全局变量;合并多个小数组为一个大数组,减少缓存未命中的次数;使用数组时,尽量保证元素在内存中是连续存储的,这样可以利用CPU的缓存;等等。 2. 函数调用优化:减少函数调用的开销,比如尽量使用内联函数,避免多余的参数传递和返回值;如果不需要同时操作多个元素,尽量用循环代替递归,减少栈的使用;等等。 3. 编译优化:启用编译器的优化选项,比如-O2或-O3,这些选项可以让编译器在优化代码时进行更多的调整;使用不同的编译器,不同的编译器对同一份代码的优化能力可能会有所不同;等等。 此外,您还可以尝试使用一些工具分析您的代码,例如Linux下的perf工具,以确定程序的瓶颈所在,并针对性地进行优化。

配置 Gradle 的缓存和并行编译等选项,优化 Gradle 构建速度。

如果你想优化 Gradle 构建速度,可以通过以下方式配置 Gradle 的缓存和并行编译等选项: 1. 配置 Gradle 的缓存:在 `gradle.properties` 文件中添加以下代码: ``` # 设置 Gradle 的缓存大小 org.gradle.caching=true org.gradle.daemon=true org.gradle.parallel=true org.gradle.configureondemand=true org.gradle.jvmargs=-Xmx4g -XX:MaxPermSize=2048m -XX:+HeapDumpOnOutOfMemoryError -Dfile.encoding=UTF-8 ``` 其中,`org.gradle.caching=true` 表示启用 Gradle 的缓存功能;`org.gradle.daemon=true` 表示启用 Gradle 的守护进程功能;`org.gradle.parallel=true` 表示启用 Gradle 的并行编译功能;`org.gradle.configureondemand=true` 表示启用 Gradle 的按需配置功能。注意,在 `org.gradle.jvmargs` 中设置的是 Gradle 的 JVM 参数,可以根据实际情况进行调整。 2. 配置 Gradle 的并行编译:在 `gradle.properties` 文件中添加以下代码: ``` # 设置 Gradle 的并行编译数量 org.gradle.parallel=true org.gradle.workers.max=4 ``` 其中,`org.gradle.parallel=true` 表示启用 Gradle 的并行编译功能;`org.gradle.workers.max=4` 表示设置 Gradle 的最大并行编译数量为 4。注意,这里的并行编译数量应该根据你的电脑配置来进行调整,避免出现系统卡顿等情况。 以上是优化 Gradle 构建速度的一些常见方式,你可以根据自己的需要进行调整。

相关推荐

最新推荐

recommend-type

51单片机并行口驱动LED数码管显示电路及程序

绍利用51单片机的一个并行口实现多个LED数码管显示的方法,给出了利用此方法设计的多路LED显示系统的硬件电路结构原理图和软件程序流程,同时给出了采用51汇编语言编写程序。
recommend-type

单片机C语言程序设计:T0控制LED实现二进制计数

说明:本例对按键的计数没有使用查询法,没有使用外部中断函数,没有使用定时或计数中断函数。而是启用了计数器,连接在 T0 引脚的按键每次按下时,会使计数寄存器的值递增,其值通过 LED以二进制形式显示
recommend-type

单片机C语言程序设计:8X8LED 点阵显示数字

名称:按键控制 8X8LED 点阵屏显示图形 说明:每次按下 K1 时,会使 8X8LED点阵屏循环显示不同图形。本例同时使用外部中断和定时中断。
recommend-type

单片机C语言程序设计:定时器控制数码管动态显示

名称:定时器控制数码管动态显示 说明:8 个数码管上分两组动态显示年月日与时分秒,本例的位显示延时用定时器实现。
recommend-type

单片机C语言程序设计:按键控制 8X8LED 点阵屏显示图形

名称:按键控制 8X8LED 点阵屏显示图形 说明:每次按下 K1 时,会使 8X8LED点阵屏循环显示不同图形。本例同时使用外部中断和定时中断。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。