利用R语言编写一个3D CNN结合Unet的模型
时间: 2024-03-10 09:44:57 浏览: 80
实现一个3D CNN结合Unet的模型需要用到R语言中的深度学习框架Keras。以下是一个示例代码,可以用于医学图像分割任务。假设我们的训练数据是一组3D CT图像和对应的标签,我们需要使用Unet结构进行特征提取,并使用3D CNN进行分类。
```r
## 加载必要的包
library(keras)
## 定义3D Unet结构
input_layer <- layer_input(shape = c(128, 128, 128, 1))
conv1 <- layer_conv3d(input_layer, filters = 32, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv1 <- layer_conv3d(conv1, filters = 32, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool1 <- layer_max_pooling3d(conv1, pool_size = c(2, 2, 2))
conv2 <- layer_conv3d(pool1, filters = 64, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv2 <- layer_conv3d(conv2, filters = 64, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool2 <- layer_max_pooling3d(conv2, pool_size = c(2, 2, 2))
conv3 <- layer_conv3d(pool2, filters = 128, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv3 <- layer_conv3d(conv3, filters = 128, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool3 <- layer_max_pooling3d(conv3, pool_size = c(2, 2, 2))
conv4 <- layer_conv3d(pool3, filters = 256, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv4 <- layer_conv3d(conv4, filters = 256, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool4 <- layer_max_pooling3d(conv4, pool_size = c(2, 2, 2))
conv5 <- layer_conv3d(pool4, filters = 512, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv5 <- layer_conv3d(conv5, filters = 512, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
up6 <- layer_upsampling3d(conv5, size = c(2, 2, 2))
up6 <- layer_concatenate(list(up6, conv4), axis = 4)
conv6 <- layer_conv3d(up6, filters = 256, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv6 <- layer_conv3d(conv6, filters = 256, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
up7 <- layer_upsampling3d(conv6, size = c(2, 2, 2))
up7 <- layer_concatenate(list(up7, conv3), axis = 4)
conv7 <- layer_conv3d(up7, filters = 128, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv7 <- layer_conv3d(conv7, filters = 128, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
up8 <- layer_upsampling3d(conv7, size = c(2, 2, 2))
up8 <- layer_concatenate(list(up8, conv2), axis = 4)
conv8 <- layer_conv3d(up8, filters = 64, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv8 <- layer_conv3d(conv8, filters = 64, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
up9 <- layer_upsampling3d(conv8, size = c(2, 2, 2))
up9 <- layer_concatenate(list(up9, conv1), axis = 4)
conv9 <- layer_conv3d(up9, filters = 32, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
conv9 <- layer_conv3d(conv9, filters = 32, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
output_layer <- layer_conv3d(conv9, filters = 1, kernel_size = c(1, 1, 1), activation = "sigmoid")
## 定义3D CNN分类器
input_layer2 <- layer_input(shape = c(128, 128, 128, 1))
conv10 <- layer_conv3d(input_layer2, filters = 64, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool10 <- layer_max_pooling3d(conv10, pool_size = c(2, 2, 2))
conv11 <- layer_conv3d(pool10, filters = 128, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool11 <- layer_max_pooling3d(conv11, pool_size = c(2, 2, 2))
conv12 <- layer_conv3d(pool11, filters = 256, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool12 <- layer_max_pooling3d(conv12, pool_size = c(2, 2, 2))
conv13 <- layer_conv3d(pool12, filters = 512, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool13 <- layer_max_pooling3d(conv13, pool_size = c(2, 2, 2))
conv14 <- layer_conv3d(pool13, filters = 1024, kernel_size = c(3, 3, 3), padding = "same", activation = "relu")
pool14 <- layer_max_pooling3d(conv14, pool_size = c(2, 2, 2))
flatten <- layer_flatten(pool14)
dense1 <- layer_dense(flatten, units = 128, activation = "relu")
dense2 <- layer_dense(dense1, units = 1, activation = "sigmoid")
## 将两个模型合并
output_layer2 <- dense2(output_layer)
model <- keras_model(inputs = list(input_layer, input_layer2), outputs = output_layer2)
## 编译模型
model %>% compile(loss = "binary_crossentropy", optimizer = optimizer_adam(lr = 1e-4), metrics = list("accuracy"))
## 训练模型
model %>% fit(list(train_data, train_data), train_labels, batch_size = 4, epochs = 50, validation_split = 0.1)
## 使用模型进行预测
predictions <- model %>% predict(list(test_data, test_data))
```
需要注意的是,上述代码中的train_data、train_labels、test_data和test_labels分别表示训练数据、训练标签、测试数据和测试标签,需要根据实际情况进行替换。另外,还需要根据实际情况进行超参数的调整,例如卷积核大小、滤波器数量、学习率等。
阅读全文