在进行织物图像瑕疵目标提取时,采用基于边缘检测的目标提取方法,matlab怎样实现,写出详细代码

时间: 2023-07-15 17:13:46 浏览: 17
基于边缘检测的图像目标提取方法可以通过使用Canny算子实现。下面是MATLAB的示例代码: ```matlab % 读取图像 img = imread('fabric.jpg'); % 将图片转换为灰度图 gray_img = rgb2gray(img); % 使用Canny算子进行边缘检测 edge_img = edge(gray_img,'canny'); % 显示原始图像和边缘检测结果 figure; subplot(1,2,1); imshow(img); title('原始图像'); subplot(1,2,2); imshow(edge_img); title('边缘检测结果'); ``` 在得到边缘检测结果之后,可以通过进一步的处理方法(如形态学操作、区域生长等)来提取图像中的目标。具体方法可以根据实际情况进行选择。
相关问题

在进行织物图像瑕疵目标提取时,采用基于边缘检测的目标提取方法,matlab怎样实现

基于边缘检测的目标提取方法一般包括以下几个步骤: 1. 读入图像并进行预处理,如灰度化、滤波等操作; 2. 进行边缘检测,可以使用Canny算子、Sobel算子等经典算法; 3. 对边缘图像进行二值化,将边缘转化为目标区域; 4. 对二值化图像进行形态学处理,如膨胀、腐蚀、开闭运算等,以去除噪声或填充空洞; 5. 对处理后的图像进行目标检测,可以使用连通区域分析、区域生长等方法,将目标区域提取出来。 下面是一个简单的基于边缘检测的目标提取代码示例: ```matlab % 读入图像并进行预处理 I = imread('fabric.jpg'); I_gray = rgb2gray(I); I_filtered = medfilt2(I_gray, [3 3]); % 边缘检测 I_edges = edge(I_filtered, 'canny', 0.3); % 二值化 I_binary = imbinarize(I_edges); % 形态学处理 SE = strel('square', 5); I_morph = imclose(I_binary, SE); % 目标检测 [L, num] = bwlabel(I_morph); stats = regionprops(L, 'Area', 'BoundingBox'); areas = [stats.Area]; idx = find(areas > 1000); I_obj = ismember(L, idx); % 显示结果 imshow(I_obj); ``` 其中,`imread`函数用于读入图像,`rgb2gray`函数将彩色图像转化为灰度图像,`medfilt2`函数进行中值滤波操作,`edge`函数进行边缘检测,`imbinarize`函数将边缘图像二值化,`strel`函数创建一个方形结构元素,`imclose`函数对二值化图像进行闭运算,`bwlabel`函数进行连通区域分析,`regionprops`函数获得区域属性,`ismember`函数提取目标区域。最后,使用`imshow`函数显示结果。

在进行织物图像瑕疵目标提取时,采用基于边缘检测的目标提取方法,怎样实现

基于边缘检测的目标提取方法通常可以分为以下几个步骤: 1. 图像预处理:对原始图像进行灰度化、降噪等操作,以便后续处理。 2. 边缘检测:使用一些边缘检测算法,如Sobel、Canny等,检测出图片中的边缘。 3. 边缘二值化:将边缘检测得到的灰度图像二值化,只留下边缘信息。 4. 目标提取:根据需要提取的目标形状和大小,通过二值化后的边缘图像进行目标提取。 具体实现步骤如下: 1. 读取图像,进行灰度化和降噪处理,如下所示: ```python import cv2 # 读取图像 img = cv2.imread('fabric_image.jpg') # 灰度化 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 降噪 blur = cv2.GaussianBlur(gray, (3, 3), 0) ``` 2. 边缘检测,这里以Canny算法为例: ```python # 边缘检测 edges = cv2.Canny(blur, 50, 150) ``` 3. 边缘二值化: ```python # 二值化 ret, thresh = cv2.threshold(edges, 0, 255, cv2.THRESH_BINARY) ``` 4. 目标提取,这里以提取圆形目标为例: ```python # 查找轮廓 contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # 遍历轮廓 for cnt in contours: area = cv2.contourArea(cnt) if area > 100 and area < 5000: # 获取圆形边界框 (x, y), radius = cv2.minEnclosingCircle(cnt) center = (int(x), int(y)) radius = int(radius) # 绘制圆形边缘 cv2.circle(img, center, radius, (0, 255, 0), 2) # 显示结果 cv2.imshow('result', img) cv2.waitKey(0) cv2.destroyAllWindows() ``` 以上代码实现了基于边缘检测的目标提取方法,可以根据实际需求进行修改。

相关推荐

### 回答1: MFDI是一种用于纺织品瑕疵检测的数据集。它包含了各种不同类型的纺织品图像,如棉布、丝绸、涤纶等等。这些图像都被标记了不同的瑕疵,如褶皱、错位、缺失等等。这个数据集非常适合用于开发机器学习算法来识别和分类纺织品上的瑕疵。 MFDI数据集的建立旨在解决传统纺织品瑕疵检测方法存在的一些问题,如人为差异大、数据量小、准确率低等等。使用MFDI数据集可以使得瑕疵检测更加准确、高效、自动化,从而提高纺织品的质量和生产效率。 另外,MFDI数据集还可以用作纺织品企业的质量控制工具,通过对纺织品进行瑕疵检测,可以快速准确地找出存在问题的纺织品,并及时采取措施进行处理。同时,MFDI数据集也可以被用作教育和培训工具,帮助工程师和技术人员更好地了解纺织品瑕疵检测的原理和应用,从而提高实践能力。 总之,MFDI数据集是一个非常有价值的纺织品瑕疵检测数据集,它可以为相关领域的研究和实践提供更多有效的支持和指导。 ### 回答2: 织物瑕疵检测数据集mfdi是一个公开的数据集,专门用于对纺织品材料的缺陷和不良品进行检测。该数据集较为完整,包含了多种纺织品上的缺陷和不良品的图像,如针孔、擦痕、断纱等等。 mfdi数据集由机电工程学院的教授和研究生团队共同开发。其目的是为了解决纺织行业中对缺陷检测和质量控制的需求。通过准确识别和定位缺陷问题,可以提高制造行业的效率和生产效益,帮助纺织企业更好地控制产品质量,更好地服务客户。 该数据集包含了两部分:训练集和测试集。其中训练集包括约2400张图像,测试集包括约1200张图像,每张图像尺寸为512×512。 其中每张图像都有对应的标注信息,在图片上标注了各种不同的瑕疵情况,使得学者和研究人员可以针对不同需求进行自己的算法和模型的开发和优化。 总的来说,mfdi数据集对纺织品行业中的缺陷检测和质量控制有着重要的作用。通过该数据集,可以帮助行业相关人员更好地把握产品的质量和生产效率,提高制造业的整体水平和市场竞争力。 ### 回答3: 织物瑕疵检测数据集mfdi是一个用于机器学习算法训练和测试的数据集。该数据集包含了大量的织物图片,其中有些图片存在瑕疵,而有些则没有瑕疵。通过使用这个数据集,可以训练出一个机器学习模型,使其能够自动检测出织物图片中的瑕疵,从而提高织物生产效率和减少废品产生。 这个数据集中包含了多种类型的织物瑕疵,比如星形瑕疵、斑点瑕疵、断纱、拉伤等,这些瑕疵都可能导致织物质量下降,需要及早检测并修复。同时,数据集中还包含了各种光照和背景条件下的图片,这可以让机器学习模型学习如何在各种情况下进行瑕疵检测。 总的来说,织物瑕疵检测数据集mfdi对于织物生产企业和研究机构来说非常有价值,可以帮助他们设计出更加高效、准确的瑕疵检测系统,提高织物质量,降低生产成本。
l0范数视觉显著性的织物疵点算法是一种用于检测织物疵点的方法。该算法主要基于l0范数理论,并且使用基于图像亮度的视觉显著性模型。 下面是这个算法的代码实现。 首先,引入所需的python库,包括: python import numpy as np from numpy import linalg as LA from scipy import sparse from scipy.sparse.linalg import spsolve from skimage import color from skimage.transform import resize from skimage.filters import threshold_yen from skimage.segmentation import felzenszwalb 接下来,读取图片并将其转换为灰度图像。使用Felzenszwalb的分割算法对图像进行超像素分割。 python img = color.rgb2gray(io.imread('image_path')) segments = felzenszwalb(img, scale=50, sigma=0.5, min_size=100) 使用Yen二值化算法得到一个二值图像,以便检测疵点。只有那些被标记为前景的超像素才被视为可能含有疵点的超像素。 python thresh = threshold_yen(img) bw = img <= thresh labels = np.unique(segments) for label in labels: seg_mask = np.where(segments == label, 1, 0) if np.sum(seg_mask * bw) < 0.1 * np.sum(seg_mask): segments[segments == label] = 0 接下来,使用l0范数稀疏编码算法检测具有疵点的超像素。首先,使用视觉显著性函数计算每个超像素的重要性。 python img = resize(img, (img.shape[0] // 16, img.shape[1] // 16)) sal = 1 - color.rgb2gray(color.rgb2lab(img) / 100.0) sal = resize(sal, img.shape) sal = (sal - np.min(sal)) / (np.max(sal) - np.min(sal)) 计算每个超像素的L0范数稀疏编码。 python n_segments = np.max(segments) X = np.zeros((img.size, n_segments)) for i in range(1, n_segments+1): idx = np.where(segments == i)[0] X[idx, i-1] = 1 将每个超像素的L0范数稀疏编码用于检测织物上的疵点。 python for i in range(n_segments): if np.sum(X[:,i]) == 0: continue Y = img.flatten()[X[:,i]!=0] D = sparse.eye(Y.size, format='csr') w_init = np.zeros((Y.size, 1)) lambda_ = 0.1 eps = 2.0 / LA.norm(Y, ord=np.inf) for i in range(50): w = spsolve(D + lambda_ * sparse.eye(Y.size, format='csr'), Y) w = w.reshape(-1, 1) w = np.sign(w) * np.maximum(np.abs(w) - eps, 0) if LA.norm(w-w_init) / LA.norm(w) < 1e-3: break w_init = w lambda_ /= 1.2 sparsity = np.sum(w != 0) / float(w.size) if sparsity > 0.2: segments[segments == i+1] = 0 通过上述算法,我们可以实现基于l0范数视觉显著性的织物疵点检测,并得到一幅图像的疵点标记。

最新推荐

chromedriver_mac64_79.0.3945.36.zip

chromedriver可执行程序下载,请注意对应操作系统和浏览器版本号,其中文件名规则为 chromedriver_操作系统_版本号,比如 chromedriver_win32_102.0.5005.27.zip表示适合windows x86 x64系统浏览器版本号为102.0.5005.27 chromedriver_linux64_103.0.5060.53.zip表示适合linux x86_64系统浏览器版本号为103.0.5060.53 chromedriver_mac64_m1_101.0.4951.15.zip表示适合macOS m1芯片系统浏览器版本号为101.0.4951.15 chromedriver_mac64_101.0.4951.15.zip表示适合macOS x86_64系统浏览器版本号为101.0.4951.15 chromedriver_mac_arm64_108.0.5359.22.zip表示适合macOS arm64系统浏览器版本号为108.0.5359.22

分布式高并发.pdf

分布式高并发

基于多峰先验分布的深度生成模型的分布外检测

基于多峰先验分布的深度生成模型的似然估计的分布外检测鸭井亮、小林圭日本庆应义塾大学鹿井亮st@keio.jp,kei@math.keio.ac.jp摘要现代机器学习系统可能会表现出不期望的和不可预测的行为,以响应分布外的输入。因此,应用分布外检测来解决这个问题是安全AI的一个活跃子领域概率密度估计是一种流行的低维数据分布外检测方法。然而,对于高维数据,最近的工作报告称,深度生成模型可以将更高的可能性分配给分布外数据,而不是训练数据。我们提出了一种新的方法来检测分布外的输入,使用具有多峰先验分布的深度生成模型。我们的实验结果表明,我们在Fashion-MNIST上训练的模型成功地将较低的可能性分配给MNIST,并成功地用作分布外检测器。1介绍机器学习领域在包括计算机视觉和自然语言处理的各个领域中然而,现代机器学习系统即使对于分

阿里云服务器下载安装jq

根据提供的引用内容,没有找到与阿里云服务器下载安装jq相关的信息。不过,如果您想在阿里云服务器上安装jq,可以按照以下步骤进行操作: 1.使用wget命令下载jq二进制文件: ```shell wget https://github.com/stedolan/jq/releases/download/jq-1.6/jq-linux64 -O jq ``` 2.将下载的jq文件移动到/usr/local/bin目录下,并添加可执行权限: ```shell sudo mv jq /usr/local/bin/ sudo chmod +x /usr/local/bin/jq ``` 3.检查j

毕业论文java vue springboot mysql 4S店车辆管理系统.docx

包括摘要,背景意义,论文结构安排,开发技术介绍,需求分析,可行性分析,功能分析,业务流程分析,数据库设计,er图,数据字典,数据流图,详细设计,系统截图,测试,总结,致谢,参考文献。

"结构化语言约束下的安全强化学习框架"

使用结构化语言约束指导安全强化学习Bharat Prakash1,Nicholas Waytowich2,Ashwinkumar Ganesan1,Tim Oates1,TinooshMohsenin11马里兰大学,巴尔的摩县(UMBC),2美国陆军研究实验室,摘要强化学习(RL)已经在解决复杂的顺序决策任务中取得了成功,当一个定义良好的奖励函数可用时。对于在现实世界中行动的代理,这些奖励函数需要非常仔细地设计,以确保代理以安全的方式行动。当这些智能体需要与人类互动并在这种环境中执行任务时,尤其如此。然而,手工制作这样的奖励函数通常需要专门的专业知识,并且很难随着任务复杂性而扩展。这导致了强化学习中长期存在的问题,即奖励稀疏性,其中稀疏或不明确的奖励函数会减慢学习过程,并导致次优策略和不安全行为。 更糟糕的是,对于RL代理必须执行的每个任务,通常需要调整或重新指定奖励函数。另一�

mac redis 的安装

以下是在Mac上安装Redis的步骤: 1. 打开终端并输入以下命令以安装Homebrew: ```shell /bin/bash -c "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)" ``` 2. 安装Redis: ```shell brew install redis ``` 3. 启动Redis服务: ```shell brew services start redis ``` 4. 验证Redis是否已成功安装并正在运行: ```shell redis-cli ping

计算机应用基础Excel题库--.doc

计算机应用根底Excel题库 一.填空 1.Excel工作表的行坐标范围是〔 〕。 2.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。 3.对数据清单中的数据进行排序时,对每一个字段还可以指定〔 〕。 4.Excel97共提供了3类运算符,即算术运算符.〔 〕 和字符运算符。 5.在Excel中有3种地址引用,即相对地址引用.绝对地址引用和混合地址引用。在公式. 函数.区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 6.在Excel 工作表中,在某单元格的编辑区输入"〔20〕〞,单元格内将显示( ) 7.在Excel中用来计算平均值的函数是( )。 8.Excel中单元格中的文字是( 〕对齐,数字是( )对齐。 9.Excel2021工作表中,日期型数据"2008年12月21日"的正确输入形式是( )。 10.Excel中,文件的扩展名是( )。 11.在Excel工作表的单元格E5中有公式"=E3+$E$2",将其复制到F5,那么F5单元格中的 公式为( )。 12.在Excel中,可按需拆分窗口,一张工作表最多拆分为 ( )个窗口。 13.Excel中,单元格的引用包括绝对引用和( ) 引用。 中,函数可以使用预先定义好的语法对数据进行计算,一个函数包括两个局部,〔 〕和( )。 15.在Excel中,每一张工作表中共有( )〔行〕×256〔列〕个单元格。 16.在Excel工作表的某单元格内输入数字字符串"3997",正确的输入方式是〔 〕。 17.在Excel工作薄中,sheet1工作表第6行第F列单元格应表示为( )。 18.在Excel工作表中,单元格区域C3:E4所包含的单元格个数是( )。 19.如果单元格F5中输入的是=$D5,将其复制到D6中去,那么D6中的内容是〔 〕。 Excel中,每一张工作表中共有65536〔行〕×〔 〕〔列〕个单元格。 21.在Excel工作表中,单元格区域D2:E4所包含的单元格个数是( )。 22.Excel在默认情况下,单元格中的文本靠( )对齐,数字靠( )对齐。 23.修改公式时,选择要修改的单元格后,按( )键将其删除,然后再输入正确的公式内容即可完成修改。 24.( )是Excel中预定义的公式。函数 25.数据的筛选有两种方式:( )和〔 〕。 26.在创立分类汇总之前,应先对要分类汇总的数据进行( )。 27.某一单元格中公式表示为$A2,这属于( )引用。 28.Excel中的精确调整单元格行高可以通过〔 〕中的"行〞命令来完成调整。 29.在Excel工作簿中,同时选择多个相邻的工作表,可以在按住( )键的同时,依次单击各个工作表的标签。 30.在Excel中有3种地址引用,即相对地址引用、绝对地址引用和混合地址引用。在公式 、函数、区域的指定及单元格的指定中,最常用的一种地址引用是〔 〕。 31.对数据清单中的数据进行排序时,可按某一字段进行排序,也可按多个字段进行排序 ,在按多个字段进行排序时称为〔 〕。多重排序 32.Excel工作表的行坐标范围是( 〕。1-65536 二.单项选择题 1.Excel工作表中,最多有〔〕列。B A.65536 B.256 C.254 D.128 2.在单元格中输入数字字符串100083〔邮政编码〕时,应输入〔〕。C A.100083 B."100083〞 C. 100083   D.'100083 3.把单元格指针移到AZ1000的最简单方法是〔〕。C A.拖动滚动条 B.按+〈AZ1000〉键 C.在名称框输入AZ1000,并按回车键 D.先用+〈 〉键移到AZ列,再用+〈 〉键移到1000行 4.用〔〕,使该单元格显示0.3。D A.6/20 C.="6/20〞 B. "6/20〞 D.="6/20〞 5.一个Excel工作簿文件在第一次存盘时不必键入扩展名,Excel自动以〔B〕作为其扩展 名。 A. .WK1 B. .XLS C. .XCL D. .DOC 6.在Excel中,使用公式输入数据,一般在公式前需要加〔〕A A.= B.单引号 C.$ D.任意符号 7.在公式中输入"=$C1+E$1〞是〔〕C A.相对引用 B.绝对引用 C.混合引用 D.任意引用 8.以下序列中,不能直接利用自动填充快速输入的是〔 〕B A.星期一.星期二.星期三 .…… B.第一类.第二类.第三类.…… C.甲.乙.丙.…… D.Mon.Tue.Wed.…… 9.工作表中K16单元格中为公式"=F6×$D$4〞,在第3行处插入一行,那么插入后K7单元 格中的公式为〔 〕A A.=F7*$D$5 B.=F7*$D$4 C

基于PC机资源的分布式计算系统中相干任务求解方法及其优势

© 2014 Anatoly Kalyaev,Iakov Korovin.出版社:Elsevier B.V.由美国应用科学研究所负责选择和/或同行评审可在www.sciencedirect.com在线获取ScienceDirectAASRI Procedia 9(2014)131 - 1372014年AASRI电路与信号处理会议(CSP 2014)利用空闲PC机解决相干任务Anatoly Kalyaeva *,Iakov Korovina南方联邦大学多处理器计算系统科学研究所,2,塔甘罗格347922,俄罗斯摘要本文提出了一种基于PC机资源的分布式计算系统中相干任务求解的新方法。这些资源的参数是动态变化的,这使得它很难在分布式计算中的应用。该方法采用多智能体方法,通过智能体的主动控制,实现了分布式计算系统中个人计算机的有效利用,并通过智能体之间的交互,分散调度任务求解过程。为了解决每一个传入的连贯任务,系统的代理联合成社区,这使得它更容易调度和执行计算。该方法的主要优点是降低了分布式�

ERROR 1045 (28000): Access denied for user 'daizong'@'localhost' (using password: NO) mac

这个错误提示表明您正在尝试使用用户名'daizong'在本地主机上连接到MySQL服务器,但是没有提供密码。这可能是因为您在连接字符串中没有指定密码,或者您提供的密码不正确。要解决此问题,您可以尝试以下几个步骤: 1. 确保您在连接字符串中提供了正确的密码。例如,如果您的密码是'password',则您的连接字符串应该类似于以下内容: ``` mysql -u daizong -ppassword ``` 2. 如果您确定密码正确,但仍然无法连接,请尝试重置MySQL root用户的密码。您可以按照以下步骤操作: - 停止MySQL服务器 ```