time_distributed = time_distributed_layer(posecd) ValueError: Input tensor must be of rank 3, 4 or 5 but was 2
时间: 2024-03-07 17:49:51 浏览: 181
这个错误通常是由于输入张量的维度不正确引起的。您使用的TimeDistributed层需要一个至少为3D的输入张量,但是您传递的张量rank为2。
为了解决这个问题,您需要将您的posecd张量转换成至少为3D的张量。假设您的posecd张量的形状为(batch_size, sequence_length),您可以使用`tf.expand_dims()`函数将其扩展为(batch_size, sequence_length, 1)的形状,例如:
```python
import tensorflow as tf
from tensorflow.keras.layers import Input, Conv1D, TimeDistributed
input_shape = (24, 1)
inputs = Input(shape=input_shape)
# 定义位置编码信息
pos_encoding = np.zeros((1, input_shape[0], input_shape[1]))
for pos in range(input_shape[0]):
for i in range(0, input_shape[1], 2):
pos_encoding[:, pos, i] = np.sin(pos / (10000 ** ((2 * i) / input_shape[1])))
pos_encoding[:, pos, i + 1] = np.cos(pos / (10000 ** ((2 * i) / input_shape[1])))
# 将位置编码信息与输入张量相加
x = inputs + tf.constant(pos_encoding, dtype=tf.float32)
# 将posecd扩展为3D张量
posecd = tf.expand_dims(posecd, axis=-1)
# 使用TimeDistributed增加位置编码信息
time_distributed_layer = TimeDistributed(Conv1D(filters=16, kernel_size=3, activation='relu'))
time_distributed = time_distributed_layer(posecd)
```
这里我们使用了`tf.expand_dims()`函数将posecd张量扩展为3D张量,然后将其传递给TimeDistributed层。
阅读全文