MATLAB Sobel算子边缘检测代码
时间: 2023-10-19 07:09:08 浏览: 93
以下是MATLAB中使用Sobel算子进行边缘检测的代码示例:
```matlab
% 读取图像
img = imread('lena.png');
% 转换为灰度图像
gray_img = rgb2gray(img);
% 定义Sobel算子
sobel_x = [-1 0 1; -2 0 2; -1 0 1];
sobel_y = [-1 -2 -1; 0 0 0; 1 2 1];
% 对图像进行卷积操作
Gx = conv2(double(gray_img), sobel_x, 'same');
Gy = conv2(double(gray_img), sobel_y, 'same');
% 计算边缘梯度和方向
gradient = sqrt(Gx.^2 + Gy.^2);
theta = atan2(Gy, Gx);
% 将梯度方向转换为整数值
theta = round(theta / (pi/4)) + 4;
% 根据梯度方向进行非极大值抑制
[row, col] = size(gray_img);
nms = zeros(row, col);
for i = 2:row-1
for j = 2:col-1
if (theta(i,j)==1 && gradient(i,j)>gradient(i,j+1) && gradient(i,j)>gradient(i,j-1))
nms(i,j) = gradient(i,j);
elseif (theta(i,j)==2 && gradient(i,j)>gradient(i+1,j+1) && gradient(i,j)>gradient(i-1,j-1))
nms(i,j) = gradient(i,j);
elseif (theta(i,j)==3 && gradient(i,j)>gradient(i+1,j) && gradient(i,j)>gradient(i-1,j))
nms(i,j) = gradient(i,j);
elseif (theta(i,j)==4 && gradient(i,j)>gradient(i+1,j-1) && gradient(i,j)>gradient(i-1,j+1))
nms(i,j) = gradient(i,j);
end
end
end
% 对非极大值抑制后的边缘进行双阈值处理
high_threshold = 0.1 * max(nms(:));
low_threshold = 0.05 * max(nms(:));
result = zeros(row, col);
result(nms>high_threshold) = 1;
result(nms>low_threshold & nms<high_threshold) = 0.5;
% 显示图像和边缘检测结果
figure;
subplot(1,2,1), imshow(gray_img), title('原图');
subplot(1,2,2), imshow(result), title('边缘检测结果');
```
运行以上代码,即可得到Sobel算子边缘检测的结果。其中,`lena.png`是一个经典的测试图像,可以在网上下载得到。在代码中,我们首先将彩色图像转换为灰度图像,然后定义Sobel算子,对图像进行卷积操作,计算边缘梯度和方向。接着,根据梯度方向进行非极大值抑制,对边缘进行双阈值处理,得到最终的边缘检测结果。最后,使用MATLAB中的`imshow`函数显示原图和边缘检测结果。
阅读全文