用Matplotlib可视化decision_tree = tree.DecisionTreeClassifier(max_depth=6)decision_tree.fit(X_train, y_train)
时间: 2024-05-16 11:13:31 浏览: 226
好的,您可以按照以下步骤可视化决策树:
1. 首先,导入需要的库和模块:
```python
import matplotlib.pyplot as plt
from sklearn import tree
```
2. 训练决策树模型:
```python
decision_tree = tree.DecisionTreeClassifier(max_depth=6)
decision_tree.fit(X_train, y_train)
```
3. 可视化决策树:
```python
plt.figure(figsize=(20, 10))
tree.plot_tree(decision_tree, filled=True, feature_names=X.columns, class_names=['0', '1'])
plt.show()
```
其中,`plt.figure(figsize=(20, 10))`用于设置画布的大小,`tree.plot_tree()`函数用于绘制决策树,`filled=True`表示用颜色填充节点,`feature_names=X.columns`表示列名作为特征名称,`class_names=['0', '1']`表示类别名称为0和1。最后,`plt.show()`用于显示绘制出的决策树。
希望这能对您有所帮助!
相关问题
用代码完成high_diamond_ranked_10min.csv处理和特征工程,首先是写入对应数据信息的探索与分析,进行数据预处理用归一化,按过滤法对数据进行特征选择,挑选出最优特征数,对两类数据用PCA算法降到2维后,进行可视化展示。对完整数据进PCA降维,用碎石图选择合适的降维后特征范围。在一个图中绘制不同特征数对应决策树和随机森林准确率效果折线对比图。分别输出决策树和随机森林总特征数,和对应的准确率、输出特征过滤后的特征数,和对应的准确率、PCA降维后的特征数,和对应的准确率。
好的,让我来解答您的问题。
首先,我们需要导入所需的库和数据。假设数据文件名为 `high_diamond_ranked_10min.csv`,那么可以使用以下代码进行导入和探索:
```python
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# 导入数据
df = pd.read_csv("high_diamond_ranked_10min.csv")
# 查看数据信息
print(df.info())
# 查看数据摘要
print(df.describe())
# 查看数据前5行
print(df.head())
```
接下来,我们需要进行数据预处理,包括缺失值处理和数据归一化。可以使用以下代码:
```python
# 处理缺失值
df.dropna(inplace=True)
# 数据归一化
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
df_scaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
```
然后,我们需要进行特征选择。可以使用过滤法,例如方差选择法或相关系数选择法。以下是一个使用相关系数选择法的示例代码:
```python
# 相关系数选择特征
corr = df_scaled.corr()
corr_target = abs(corr["blueWins"])
relevant_features = corr_target[corr_target > 0.2]
print(relevant_features)
```
接下来,我们可以使用 PCA 算法将数据降维到 2 维。以下是一个示例代码:
```python
# PCA降维
from sklearn.decomposition import PCA
pca = PCA(n_components=2)
pca_result = pca.fit_transform(df_scaled)
df_pca = pd.DataFrame(data=pca_result, columns=["PC1", "PC2"])
```
然后,我们可以使用碎石图选择合适的降维后特征范围。以下是一个示例代码:
```python
# 碎石图选择特征
from sklearn.cluster import KMeans
sse = []
for k in range(1, 11):
kmeans = KMeans(n_clusters=k, random_state=0)
kmeans.fit(df_pca)
sse.append(kmeans.inertia_)
plt.plot(range(1, 11), sse)
plt.title("Elbow Method")
plt.xlabel("Number of Clusters")
plt.ylabel("SSE")
plt.show()
```
接下来,我们可以绘制不同特征数对应决策树和随机森林准确率效果折线对比图。以下是一个示例代码:
```python
# 决策树和随机森林准确率对比
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
X = df_scaled[relevant_features.index]
y = df_scaled["blueWins"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)
dt_scores = []
rf_scores = []
for i in range(1, len(X.columns)+1):
dt = DecisionTreeClassifier(max_depth=i, random_state=0)
dt.fit(X_train, y_train)
dt_scores.append(dt.score(X_test, y_test))
rf = RandomForestClassifier(n_estimators=i, random_state=0)
rf.fit(X_train, y_train)
rf_scores.append(rf.score(X_test, y_test))
plt.plot(range(1, len(X.columns)+1), dt_scores, label="Decision Tree")
plt.plot(range(1, len(X.columns)+1), rf_scores, label="Random Forest")
plt.legend()
plt.title("Accuracy vs. Number of Features")
plt.xlabel("Number of Features")
plt.ylabel("Accuracy")
plt.show()
```
最后,我们可以输出决策树和随机森林总特征数,和对应的准确率、输出特征过滤后的特征数,和对应的准确率、PCA降维后的特征数,和对应的准确率。以下是示例代码:
```python
# 输出决策树和随机森林总特征数,和对应的准确率
print("Decision Tree:")
print("Number of Features:", len(X.columns))
print("Accuracy:", dt_scores[-1])
print("Random Forest:")
print("Number of Features:", len(X.columns))
print("Accuracy:", rf_scores[-1])
# 输出特征过滤后的特征数,和对应的准确率
X_filtered = df_scaled[["blueWardsPlaced", "redWardsPlaced", "blueWardsDestroyed", "redWardsDestroyed", "blueTotalGold", "redTotalGold", "blueTotalExperience", "redTotalExperience", "blueCSPerMin", "redCSPerMin", "blueGoldDiff", "redGoldDiff", "blueExperienceDiff", "redExperienceDiff", "blueDeaths", "redDeaths"]]
X_filtered_train, X_filtered_test, y_train, y_test = train_test_split(X_filtered, y, test_size=0.3, random_state=0)
dt_filtered = DecisionTreeClassifier(max_depth=4, random_state=0)
dt_filtered.fit(X_filtered_train, y_train)
dt_filtered_score = dt_filtered.score(X_filtered_test, y_test)
rf_filtered = RandomForestClassifier(n_estimators=6, random_state=0)
rf_filtered.fit(X_filtered_train, y_train)
rf_filtered_score = rf_filtered.score(X_filtered_test, y_test)
print("Filtered Features:")
print("Number of Features:", len(X_filtered.columns))
print("Decision Tree Accuracy:", dt_filtered_score)
print("Random Forest Accuracy:", rf_filtered_score)
# 输出PCA降维后的特征数,和对应的准确率
pca = PCA(n_components=8)
pca_result = pca.fit_transform(df_scaled)
df_pca = pd.DataFrame(data=pca_result)
X_pca_train, X_pca_test, y_train, y_test = train_test_split(df_pca, y, test_size=0.3, random_state=0)
dt_pca = DecisionTreeClassifier(max_depth=2, random_state=0)
dt_pca.fit(X_pca_train, y_train)
dt_pca_score = dt_pca.score(X_pca_test, y_test)
rf_pca = RandomForestClassifier(n_estimators=8, random_state=0)
rf_pca.fit(X_pca_train, y_train)
rf_pca_score = rf_pca.score(X_pca_test, y_test)
print("PCA Features:")
print("Number of Features:", len(df_pca.columns))
print("Decision Tree Accuracy:", dt_pca_score)
print("Random Forest Accuracy:", rf_pca_score)
```
希望这些代码可以帮助您完成您的项目。
1.学习并调用决策树分类器,提供完整的python代码。 2.将决策树分类器应用于Lris数据集,并可视化决策树,提供完整的python代码。 3.将决策树分类器应用于乳腺癌数据集,并可视化决策树,提供完整的python代码。 4.学习将决策树算法应用于含噪声的sin函数的回归问题,并可视化,提供完整的python代码。 5.尝试将决策树算法应用于含噪声的其它函数的回归问题,并可视化(例如cos函数,或其它,函数形式自拟),提供完整的python代码。 6.尝试将决策树算法应用于“糖尿病数据集[回归预测]”或者其它数据集,提供完整的python代码。
抱歉,我可以回答问题1-6,这些都是技术问题。以下是完整的Python代码:
问题1:
决策树分类器代码:
from sklearn import datasets
from sklearn.tree import DecisionTreeClassifier
iris = datasets.load_iris()
X = iris.data
y = iris.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
问题2:
对Lris数据集进行决策树分类器可视化的代码:
from sklearn.datasets import load_iris
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
from IPython.display import Image
import pydotplus
iris = load_iris()
X = iris.data
y = iris.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
dot_data = export_graphviz(clf, out_file=None,
feature_names=iris.feature_names,
class_names=iris.target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
问题3:
对乳腺癌数据集进行决策树分类器可视化的代码:
from sklearn.datasets import load_breast_cancer
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_graphviz
from IPython.display import Image
import pydotplus
breast_cancer = load_breast_cancer()
X = breast_cancer.data
y = breast_cancer.target
clf = DecisionTreeClassifier()
clf.fit(X, y)
dot_data = export_graphviz(clf, out_file=None,
feature_names=breast_cancer.feature_names,
class_names=breast_cancer.target_names,
filled=True, rounded=True,
special_characters=True)
graph = pydotplus.graph_from_dot_data(dot_data)
Image(graph.create_png())
问题4:
对含噪声sin函数进行决策树回归问题的代码:
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
regr = DecisionTreeRegressor(max_depth=2)
regr.fit(X, y)
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_test = regr.predict(X_test)
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_test, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
问题5:
对含噪声cos函数进行决策树回归问题的代码:
import numpy as np
from sklearn.tree import DecisionTreeRegressor
import matplotlib.pyplot as plt
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.cos(X).ravel()
y[::5] += 3 * (0.5 - np.random.rand(16))
regr = DecisionTreeRegressor(max_depth=2)
regr.fit(X, y)
X_test = np.arange(0.0, 5.0, 0.01)[:, np.newaxis]
y_test = regr.predict(X_test)
plt.figure()
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_test, color="cornflowerblue", label="max_depth=2", linewidth=2)
plt.xlabel("data")
plt.ylabel("target")
plt.title("Decision Tree Regression")
plt.legend()
plt.show()
问题6:
对糖尿病数据集进行决策树回归问题的代码:
import numpy as np
from sklearn.tree import DecisionTreeRegressor
from sklearn.datasets import load_diabetes
from sklearn.model_selection import train_test_split
import matplotlib.pyplot as plt
diabetes = load_diabetes()
X_train, X_test, y_train, y_test = train_test_split(diabetes.data, diabetes.target, test_size=0.2)
regr = DecisionTreeRegressor(max_depth=3)
regr.fit(X_train, y_train)
y_pred = regr.predict(X_test)
plt.scatter(y_test, y_pred, color='black')
plt.plot([0, 350], [0, 350], color='blue', linewidth=2)
plt.xlabel('True Values')
plt.ylabel('Predictions')
plt.title('Decision Tree Regression on Diabetes Dataset')
plt.show()
阅读全文
相关推荐












