嵌入式,steam32f103zet6芯片,如何每隔2秒,通过ADC1的16通道来捕获芯片内部温度,并利用DMA方式通过串口显示
时间: 2024-03-11 19:46:49 浏览: 76
针对你的问题,我可以给出以下步骤:
1. 首先,在STM32F103ZET6芯片上配置ADC1的16个通道来捕获温度传感器的数据。
2. 然后,配置DMA通道,使得ADC1的数据可以通过DMA方式传输到内存中。
3. 接下来,配置串口,设置波特率和相应的串口参数。
4. 在代码中实现一个每隔2秒的定时器,当定时器到达时触发中断。
5. 在定时器中断服务程序中,将DMA传输的数据通过串口发送出去。
下面是一个简单的代码示例,供你参考:
```c
#include <stdio.h>
#include "stm32f10x.h"
#define ADC1_DR_Address ((uint32_t)0x4001244C) // ADC1数据寄存器地址
void ADC1_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
// 使能ADC1时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
// 使能DMA1时钟
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
// 配置ADC1通道16对应的GPIO
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// ADC1配置
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
// ADC1常规通道配置
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_55Cycles5);
// DMA配置
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADC_ConvertedValue;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 1;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Disable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
// 使能DMA1通道1
DMA_Cmd(DMA1_Channel1, ENABLE);
// 启动ADC1转换
ADC_Cmd(ADC1, ENABLE);
// ADC1校准
ADC_ResetCalibration(ADC1);
while (ADC_GetResetCalibrationStatus(ADC1));
ADC_StartCalibration(ADC1);
while (ADC_GetCalibrationStatus(ADC1));
// 启动ADC1软件触发转换
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
}
void USART1_Init(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
// 使能USART1时钟
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 | RCC_APB2Periph_GPIOA, ENABLE);
// USART1_TX引脚配置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// USART1_RX引脚配置
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
// USART1配置
USART_InitStructure.USART_BaudRate = 9600;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART1, &USART_InitStructure);
// 使能USART1
USART_Cmd(USART1, ENABLE);
}
void TIM2_Init(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
NVIC_InitTypeDef NVIC_InitStructure;
// 使能TIM2时钟
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);
// TIM2配置
TIM_TimeBaseStructure.TIM_Period = 2000 - 1; // 定时器周期为2秒
TIM_TimeBaseStructure.TIM_Prescaler = 7200 - 1; // 定时器分频为7200
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);
// TIM2中断配置
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
// 启动TIM2
TIM_Cmd(TIM2, ENABLE);
// 启动TIM2更新中断
TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE);
}
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) {
// 获取ADC1采样值
uint16_t adc_value = ADC_GetConversionValue(ADC1);
// 将采样值转换为温度值
float temperature = (float)adc_value / 4096 * 3300 / 10;
// 将温度值转换为字符串
char temperature_str[16];
sprintf(temperature_str, "%.2f", temperature);
// 发送温度值字符串
for (int i = 0; temperature_str[i]; i++) {
USART_SendData(USART1, temperature_str[i]);
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
}
// 发送换行符
USART_SendData(USART1, '\r');
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
USART_SendData(USART1, '\n');
while (USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET);
// 清除TIM2更新中断标志位
TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
}
}
int main(void)
{
// 初始化ADC1
ADC1_Init();
// 初始化USART1
USART1_Init();
// 初始化定时器TIM2
TIM2_Init();
while (1);
}
```
上述代码实现了每隔2秒通过串口发送一次温度值,你可以根据自己的需求进行修改。
阅读全文