你给的代码的 seq_len, batch_size, input_size = x.size() 报错TypeError: 'int' object is not callable
时间: 2024-03-03 08:47:05 浏览: 55
这个错误可能是由于变量名和函数名重复导致的。请检查代码中是否存在类似以下情况的代码:
```
size = 10
size(3)
```
在这个例子中,`size`被赋值为整数10,然后尝试将其当作函数调用,并传递参数3,这会导致TypeError: 'int' object is not callable错误。为了避免这种错误,请确保变量名和函数名不重复。您可以尝试将变量名更改为其他名称,例如:
```
seq_len, batch_size, input_size = x.size()
```
这样,在代码中调用`size()`函数时就不会与变量名冲突了。
相关问题
def forward(self, x, seq_len): # CNN的输入为 (batch_size, input_size, seq_len) x = x.transpose(1, 2) # 转换成 (batch_size, seq_len, input_size) # x = self.conv1(x) conv = self.conv1(x) conv = conv.permute(0, 2, 1) conv = self.conv2(conv) conv = conv.permute(0, 2, 1) linear1 = self.linear1(conv) linear1 = self.relu(linear1) linear2 = self.linear2(linear1) return self.sigmoid(linear2)检查代码是否错误
这段代码看起来没有明显的语法错误,但是无法确定代码的正确性,因为无法得知该代码所在的上下文和所要解决的问题。根据代码的结构和函数名称,这段代码可能是一个用于文本分类的模型,其中包括了卷积神经网络和全连接层。在这个模型中,输入数据的维度为(batch_size, input_size, seq_len),经过一系列的卷积和全连接计算之后,最终输出一个标量,代表文本的分类结果。
在代码中,`x = x.transpose(1, 2)`将输入数据的维度从(batch_size, input_size, seq_len)转换为(batch_size, seq_len, input_size),这是因为卷积神经网络通常要求输入数据的维度为(channel, height, width, batch_size),而在这里input_size可以看作是channel,seq_len可以看作是height和width。
接下来,代码经过了两个卷积层和两个全连接层的计算,并最终输出一个标量结果。其中,卷积层通过`conv.permute(0, 2, 1)`对输入数据的维度进行了重排列,将其转换为(channel, height, width, batch_size)的形式,以便于卷积计算。最后,输出结果通过sigmoid函数进行了激活,以确保其值在[0, 1]范围内。
class Net(nn.Module): def __init__(self,input_size,hidden_size,num_layers,output_size,batch_size,seq_length) -> None: super(Net,self).__init__() self.input_size=input_size self.hidden_size=hidden_size self.num_layers=num_layers self.output_size=output_size self.batch_size=batch_size self.seq_length=seq_length self.num_directions=1 # 单向LSTM self.lstm=nn.LSTM(input_size=input_size,hidden_size=hidden_size,num_layers=num_layers,batch_first=True) # LSTM层 self.fc=nn.Linear(hidden_size,output_size) # 全连接层 def forward(self,x): # e.g. x(10,3,100) 三个句子,十个单词,一百维的向量,nn.LSTM(input_size=100,hidden_size=20,num_layers=4) # out.shape=(10,3,20) h/c.shape=(4,b,20) batch_size, seq_len = x.size()[0], x.size()[1] # x.shape=(604,3,3) h_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size) c_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size) # output(batch_size, seq_len, num_directions * hidden_size) output, _ = self.lstm(x, (h_0, c_0)) # output(5, 30, 64) pred = self.fc(output) # (5, 30, 1) pred = pred[:, -1, :] # (5, 1) return pred改成python代码
这段代码是一个简单的使用 PyTorch 实现的 LSTM 模型。下面是将其转化为 Python 代码的版本:
```python
import torch
import torch.nn as nn
class Net(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, seq_length):
super(Net, self).__init__()
self.input_size = input_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.output_size = output_size
self.batch_size = batch_size
self.seq_length = seq_length
self.num_directions = 1 # 单向LSTM
# LSTM层
self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True)
# 全连接层
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
# x.shape=(10,3,100),三个句子,十个单词,一百维的向量
# out.shape=(10,3,20),h/c.shape=(4,b,20)
batch_size, seq_len = x.size()[0], x.size()[1]
h_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
c_0 = torch.randn(self.num_directions * self.num_layers, x.size(0), self.hidden_size)
output, _ = self.lstm(x, (h_0, c_0)) # output(batch_size, seq_len, num_directions * hidden_size)
pred = self.fc(output) # (5, 30, 1)
pred = pred[:, -1, :] # (5, 1)
return pred
```
阅读全文