基于matlab使用多层感知机对有害邮件进行分类的完整代码,数据集分为训练集和测试集,不能使用自带的神经网络工具箱
时间: 2024-02-16 17:05:10 浏览: 73
好的,以下是基于matlab使用多层感知机对有害邮件进行分类的完整代码。本代码使用的数据集为Spambase数据集,分为训练集和测试集,不能使用matlab自带的神经网络工具箱。
```
% 读取训练数据
train_data = csvread('spambase_train.csv');
train_X = train_data(:, 1:end-1)';
train_Y = train_data(:, end)';
% 读取测试数据
test_data = csvread('spambase_test.csv');
test_X = test_data(:, 1:end-1)';
test_Y = test_data(:, end)';
% 初始化神经网络参数
input_layer_size = size(train_X, 1);
hidden_layer_size = 15;
output_layer_size = 1;
W1 = rand(hidden_layer_size, input_layer_size);
b1 = rand(hidden_layer_size, 1);
W2 = rand(output_layer_size, hidden_layer_size);
b2 = rand(output_layer_size, 1);
% 设置超参数
learning_rate = 0.01;
num_epochs = 1000;
% 定义sigmoid函数
sigmoid = @(z) 1./(1 + exp(-z));
% 训练神经网络
for epoch = 1:num_epochs
% 前向传播
Z1 = W1*train_X + b1;
A1 = sigmoid(Z1);
Z2 = W2*A1 + b2;
A2 = sigmoid(Z2);
% 计算代价函数
J = -1/size(train_Y, 2)*sum(train_Y.*log(A2) + (1-train_Y).*log(1-A2));
% 反向传播
dZ2 = A2 - train_Y;
dW2 = 1/size(train_Y, 2)*dZ2*A1';
db2 = 1/size(train_Y, 2)*sum(dZ2, 2);
dZ1 = W2'*dZ2.*(A1.*(1-A1));
dW1 = 1/size(train_Y, 2)*dZ1*train_X';
db1 = 1/size(train_Y, 2)*sum(dZ1, 2);
% 更新参数
W1 = W1 - learning_rate*dW1;
b1 = b1 - learning_rate*db1;
W2 = W2 - learning_rate*dW2;
b2 = b2 - learning_rate*db2;
% 打印训练进度
if mod(epoch, 100) == 0
disp(['Epoch ', num2str(epoch), ' Cost: ', num2str(J)]);
end
end
% 测试神经网络
Z1 = W1*test_X + b1;
A1 = sigmoid(Z1);
Z2 = W2*A1 + b2;
A2 = sigmoid(Z2);
% 计算测试准确率
accuracy = sum((A2>0.5) == test_Y)/size(test_Y, 2);
disp(['Test Accuracy: ', num2str(accuracy)]);
```
以上代码实现了一个包含一个隐层的多层感知机,使用sigmoid函数作为激活函数,使用交叉熵代价函数进行训练。在训练完成后,使用测试集计算分类准确率。
阅读全文