unsigned char* frameData = NULL
时间: 2024-04-04 17:29:43 浏览: 84
这是一个定义了名为frameData的指针变量,类型为unsigned char*,初始值为NULL。该指针变量可以用来指向一段内存空间,该空间中存储的数据类型为无符号字符。在使用该指针变量之前,需要先为其分配内存空间,可以使用malloc或new等函数来完成。同时,需要注意在使用完该指针变量后,需要手动释放其所指向的内存空间,以防止内存泄漏。
相关问题
while(1){ // lasttime = RTMP_GetTime(); ringget(&ringinfo); int bKeyframe = (ringinfo.frame_type == 1) ? TRUE : FALSE; if(bKeyframe == 1){ int width = 0,height = 0, fps=0; h264_decode_sps(metaData.Sps,metaData.nSpsLen,width,height,fps); // printf("width = %d\n",width); // printf("height = %d\n",height); // printf("fps = %d\n",fps); if(fps <= 0) fps = 25; tick_gap = 1000/fps; } // now = RTMP_GetTime(); // delaytime = tick_gap-now+lasttime; // printf("msleep = %d\n",delaytime); // msleep( (delaytime<0) ? 0 : delaytime); // SendH264Packet((unsigned char*)ringinfo.buffer, (unsigned int)ringinfo.size, bKeyframe, ringinfo.stamp); SendH264Packet((unsigned char*)ringinfo.buffer, (unsigned int)ringinfo.size, bKeyframe, tick); tick += tick_gap; lasttime = now + delaytime; now = RTMP_GetTime(); delaytime = tick_gap-now+lasttime ; printf("msleep = %d\n",delaytime); msleep( (delaytime<0) ? 0 : delaytime); }优化一下上面代码
这段代码中,主要是一个无限循环,不断地从一个环形缓存中获取数据,然后将数据发送出去,同时根据获取到的数据的类型来设置一些参数,如视频的帧率等。优化方案如下:
1. 将打印调试信息的代码注释掉,避免对程序性能的影响。
2. 将获取数据和发送数据的代码分离为两个线程,这样可以使得两个操作并行执行,提高程序的并发性和性能。
3. 使用条件变量来实现线程间的同步和互斥,避免数据竞争和死锁问题。
4. 将固定的 sleep 时间改为动态计算得到的延迟时间,这样可以避免一些不必要的等待时间,提高程序的响应速度。
5. 使用宏定义或者常量来代替一些魔法数字,增加代码的可读性和可维护性。
下面是优化后的代码示例:
```
// 定义环形缓存
RingBuffer ring_buffer;
// 定义互斥锁和条件变量
pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
// 定义全局变量
int width = 0, height = 0, fps = 0;
int tick_gap = 0, tick = 0;
unsigned long long last_time = 0;
// 定义获取数据线程函数
void *get_data_thread(void *arg) {
while (1) {
// 加锁
pthread_mutex_lock(&mutex);
// 如果环形缓存为空,则等待
while (ring_buffer.empty()) {
pthread_cond_wait(&cond, &mutex);
}
// 从环形缓存中获取数据
RingInfo ring_info = ring_buffer.get();
// 解锁
pthread_mutex_unlock(&mutex);
// 判断数据类型
int is_key_frame = (ring_info.frame_type == 1) ? TRUE : FALSE;
if (is_key_frame) {
h264_decode_sps(metaData.Sps, metaData.nSpsLen, width, height, fps);
if (fps <= 0) fps = DEFAULT_FPS;
tick_gap = 1000 / fps;
}
// 发送数据
SendH264Packet((unsigned char *) ring_info.buffer, (unsigned int) ring_info.size, is_key_frame, tick);
tick += tick_gap;
last_time = RTMP_GetTime();
}
}
// 定义发送数据线程函数
void *send_data_thread(void *arg) {
while (1) {
// 计算延迟时间
unsigned long long now = RTMP_GetTime();
int delay_time = tick_gap - (now - last_time);
// 如果延迟时间小于等于 0,则不等待
if (delay_time > 0) {
msleep(delay_time);
}
// 唤醒获取数据线程
pthread_cond_signal(&cond);
}
}
// 主函数
int main() {
// 初始化环形缓存
ring_buffer.init();
// 创建获取数据线程和发送数据线程
pthread_t get_data_tid, send_data_tid;
pthread_create(&get_data_tid, NULL, get_data_thread, NULL);
pthread_create(&send_data_tid, NULL, send_data_thread, NULL);
// 等待线程结束
pthread_join(get_data_tid, NULL);
pthread_join(send_data_tid, NULL);
return 0;
}
```
需要注意的是,这只是一个简单的优化方案,具体的实现方式可能因为不同的应用场景而有所不同。
Write a program to simulate a process of translation from a logical address to physical address. Assumptions 1. Assume the file la.txt includes the sequence of generated addresses from CPU. 2. Use a part of memory as backing store that store data for a process. 3. The backing store size is 128 bytes 4. The size of process p is 128 bytes. 5. The contents of p is included in a file pdata.bin which is a binary file. 6. Use a part of memory as RAM. The size of physical memory is 256 bytes, from 0 to 255. All the physical memory is available, allocating starting from beginning in sequence. That is, allocate frame 0 first, then frame 1, then frame 2…. 7. The size of a frame is 32 bytes, i.e., 5 bits for the offset in a frame, total number of frames is 8. 8. At beginning, no page table is available for process p. Requirements Write a program to 1. Setup a simulating backing store in memory. Read the data from pdata.bin to this backing store. 2. Initialize a page table for process p, set the frame number to be -1 for each page, indicating that the page is not loaded into memory yet. 3. Read logical addresses one by one from la.txt. 4. For each logical address, a) if its page has been loaded into physical memory, simply find the frame number in the page table, then generate physical address, find and print out the physical address and data inside this address. b) if the page is used for the first time, i.e., in page table, its frame number is -1,then the page that contains this address should be loaded into a free frame in physical memory (RAM). Then update the page table by adding the frame number to the right index in the page table. Then repeat 4a). Refer to Figure 1 for the relationships and how physical memory, backing store, and CPU are simulated. Figure 1 How physical memory, backing store and CPU are simulated in this program assignment Hints: a) use a memory block pointed by a pointer or use an array as a simulation of backing store b) use functions fread or mmap for the binary file read. Search through the Internet for the usage of these functions. c) Use an array to simulate the memory. d) Use bit operators &, |, <<, and >> to get the bits in a logic address or form a physical address e) Use char for the type of data in the process, use unsigned char (8 bits) for the type of address. Coding & Submission 1. Using pure C to finish this program. 2. Put all the codes in one .c file named PA3_#####.c, replace “#####” as the last 5 digits of your student ID. 3. Put pdata.txt and la.txt in the same folder as PA3_#####.c, which the need .txt file can be open directly by filename instead of absolute path. 4. Submit only the .c file mentioned above.使用C语言完成
```
#include <stdio.h>
#include <stdlib.h>
#define BACKING_STORE_SIZE 128
#define PAGE_SIZE 32
#define NUM_PAGES 4
#define NUM_FRAMES 8
#define FRAME_SIZE 32
#define PHYSICAL_MEMORY_SIZE NUM_FRAMES * FRAME_SIZE
int page_table[NUM_PAGES];
unsigned char backing_store[BACKING_STORE_SIZE];
unsigned char physical_memory[PHYSICAL_MEMORY_SIZE];
void load_page(int page_num, int frame_num) {
int byte_offset = page_num * PAGE_SIZE;
int frame_offset = frame_num * FRAME_SIZE;
for (int i = 0; i < PAGE_SIZE; i++) {
physical_memory[frame_offset + i] = backing_store[byte_offset + i];
}
}
int main() {
FILE *la_file = fopen("la.txt", "r");
FILE *pdata_file = fopen("pdata.bin", "rb");
if (la_file == NULL || pdata_file == NULL) {
printf("Error opening file\n");
return 1;
}
// populate backing store with process data
fread(backing_store, sizeof(unsigned char), BACKING_STORE_SIZE, pdata_file);
// initialize page table
for (int i = 0; i < NUM_PAGES; i++) {
page_table[i] = -1;
}
// read logical addresses from file
int logical_address;
while (fscanf(la_file, "%d", &logical_address) != EOF) {
// calculate page number and offset
int page_num = logical_address / PAGE_SIZE;
int page_offset = logical_address % PAGE_SIZE;
// check if page is in memory
if (page_table[page_num] != -1) {
int frame_num = page_table[page_num];
int physical_address = (frame_num * FRAME_SIZE) + page_offset;
printf("Logical address: %d, Physical address: %d, Data: %c\n",
logical_address, physical_address, physical_memory[physical_address]);
} else {
// find a free frame in physical memory
int free_frame = -1;
for (int i = 0; i < NUM_FRAMES; i++) {
if (page_table[i] == -1) {
free_frame = i;
break;
}
}
// if no free frame is found, use a random one (for simplicity)
if (free_frame == -1) {
free_frame = rand() % NUM_FRAMES;
page_table[free_frame] = -1;
}
// load page into free frame
load_page(page_num, free_frame);
page_table[page_num] = free_frame;
// print physical address
int physical_address = (free_frame * FRAME_SIZE) + page_offset;
printf("Logical address: %d, Physical address: %d, Data: %c\n",
logical_address, physical_address, physical_memory[physical_address]);
}
}
fclose(la_file);
fclose(pdata_file);
return 0;
}
```
阅读全文