matlab对给定数组进行高斯拟合并求其半高宽
时间: 2023-07-22 13:22:41 浏览: 418
程序_半高宽_massbjb_多普勒展宽matlab_
好的,针对您的问题,我可以给出以下步骤:
1.首先,您需要使用MATLAB的“fit”函数对给定的数组进行高斯拟合。您可以使用以下代码:
```matlab
% x是自变量,y是对应的函数值,假设高斯函数为g(x)
g = fit(x', y', 'gauss1');
```
2.然后,您需要使用拟合参数计算高斯函数的半高宽。半高宽定义为高斯函数峰值处函数值的一半的宽度(即两个半高处的距离)。您可以使用以下代码来计算:
```matlab
% 获取高斯函数峰值
peak = g.b1;
% 获取高斯函数标准差
sigma = g.c1/sqrt(2);
% 计算函数值的一半
half_max = peak/2;
% 找到函数值最接近一半的两个点
[~, idx1] = min(abs(y - half_max));
[~, idx2] = min(abs(y - half_max));
% 计算两个点之间的距离
FWHM = abs(x(idx1) - x(idx2));
```
请注意,上述代码假设您的高斯函数是一维的。如果您有一个二维高斯分布,您需要使用“gauss2”而不是“gauss1”来拟合函数,并相应地调整计算半高宽的代码。
希望这些代码可以帮助您解决您的问题!
阅读全文