bertscore可以计算不同数量的参考句和候选句的语义相似度代码
时间: 2024-05-10 14:16:12 浏览: 50
是的,bertscore可以计算不同数量的参考句和候选句的语义相似度。下面是一个使用bertscore计算不同数量参考句和候选句的语义相似度的Python代码示例:
```python
from bert_score import score
# 一个候选句和一个参考句
candidate = ["This is a test sentence."]
references = [["This is a reference sentence."]]
P, R, F1 = score(candidate, references, lang='en', model_type='bert-base-uncased', verbose=False)
print("Precision:", P.item())
print("Recall:", R.item())
print("F1 score:", F1.item())
# 一个候选句和多个参考句
candidate = ["This is a test sentence."]
references = [["This is a reference sentence.", "This is another reference sentence."]]
P, R, F1 = score(candidate, references, lang='en', model_type='bert-base-uncased', verbose=False)
print("Precision:", P.item())
print("Recall:", R.item())
print("F1 score:", F1.item())
# 多个候选句和多个参考句
candidates = ["This is a test sentence.", "Another test sentence."]
references = [["This is a reference sentence.", "This is another reference sentence."], ["A reference sentence for the second candidate."]]
P, R, F1 = score(candidates, references, lang='en', model_type='bert-base-uncased', verbose=False)
print("Precision:", P)
print("Recall:", R)
print("F1 score:", F1)
```
在上面的示例中,我们使用了bertscore库来计算候选句和参考句之间的语义相似度。我们为不同数量的候选句和参考句执行了三个示例。在每个示例中,我们使用`score`函数计算了候选句和参考句之间的精确度、召回率和F1分数。您可以根据需要更改候选句和参考句的数量并使用相同的代码计算它们之间的语义相似度。
阅读全文