使用tensorflow2.0版本,使用卷积神经网络对CIFAR-100数据集进行数据预处理并给出训练后的模型得分
时间: 2024-03-29 22:34:15 浏览: 69
好的,以下是使用TensorFlow 2.0版本,使用卷积神经网络对CIFAR-100数据集进行数据预处理并给出训练后的模型得分的步骤:
1. 导入必要的库
```python
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.datasets import cifar100
```
2. 加载数据集
```python
(x_train, y_train), (x_test, y_test) = cifar100.load_data()
```
3. 数据预处理
```python
x_train = x_train.astype("float32") / 255.0
x_test = x_test.astype("float32") / 255.0
y_train = keras.utils.to_categorical(y_train, 100)
y_test = keras.utils.to_categorical(y_test, 100)
```
4. 定义模型
```python
model = keras.Sequential(
[
keras.Input(shape=(32, 32, 3)),
layers.Conv2D(32, 3, activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(64, 3, activation="relu"),
layers.MaxPooling2D(pool_size=(2, 2)),
layers.Conv2D(128, 3, activation="relu"),
layers.Flatten(),
layers.Dense(256, activation="relu"),
layers.Dense(100, activation="softmax"),
]
)
```
5. 编译模型并训练
```python
model.compile(loss="categorical_crossentropy", optimizer="adam", metrics=["accuracy"])
model.fit(x_train, y_train, batch_size=64, epochs=10, validation_split=0.2)
```
6. 评估模型
```python
score = model.evaluate(x_test, y_test, batch_size=64, verbose=0)
print("Test loss:", score[0])
print("Test accuracy:", score[1])
```
最终输出的模型得分将在测试集上显示。
阅读全文