深度置信网络python代码
时间: 2023-07-02 17:02:58 浏览: 225
### 回答1:
深度置信网络(Deep Belief Network,DBN)是一种由多个受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)堆叠而成的深度学习模型。下面是一个用Python实现的深度置信网络的简单示例代码:
```python
import numpy as np
import tensorflow as tf
# 定义一个受限玻尔兹曼机(RBM)类
class RBM(object):
def __init__(self, visible_nodes, hidden_nodes):
self.visible_nodes = visible_nodes
self.hidden_nodes = hidden_nodes
self.weights = tf.Variable(tf.random.normal([visible_nodes, hidden_nodes]))
self.visible_bias = tf.Variable(tf.zeros([visible_nodes]))
self.hidden_bias = tf.Variable(tf.zeros([hidden_nodes]))
# 定义识别步骤
def recognize(self, visible):
hidden_prob = tf.nn.sigmoid(tf.matmul(visible, self.weights) + self.hidden_bias)
hidden_state = tf.nn.relu(tf.sign(hidden_prob - tf.random.uniform(tf.shape(hidden_prob))))
return hidden_state
# 定义生成步骤
def generate(self, hidden):
visible_prob = tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(self.weights)) + self.visible_bias)
visible_state = tf.nn.relu(tf.sign(visible_prob - tf.random.uniform(tf.shape(visible_prob))))
return visible_state
# 定义一步回归训练
def train_step(self, visible, k=1):
with tf.GradientTape() as tape:
positive_hidden = self.recognize(visible)
for i in range(k):
visible_gibbs = self.generate(positive_hidden)
negative_hidden = self.recognize(visible_gibbs)
positive_gradient = tf.matmul(tf.transpose(visible), positive_hidden)
negative_gradient = tf.matmul(tf.transpose(visible_gibbs), negative_hidden)
delta_weights = (positive_gradient - negative_gradient) / tf.cast(tf.shape(visible)[0], tf.float32)
delta_visible_bias = tf.reduce_mean(visible - visible_gibbs, 0)
delta_hidden_bias = tf.reduce_mean(positive_hidden - negative_hidden, 0)
self.weights.assign_add(0.1 * delta_weights)
self.visible_bias.assign_add(0.1 * delta_visible_bias)
self.hidden_bias.assign_add(0.1 * delta_hidden_bias)
return tape.gradient(self.weights, self.weights), tape.gradient(self.visible_bias, self.visible_bias), tape.gradient(self.hidden_bias, self.hidden_bias)
# 创建深度置信网络
class DeepBeliefNetwork(object):
def __init__(self, rbm_layers):
self.rbm_layers = []
for i in range(len(rbm_layers)-1):
self.rbm_layers.append(RBM(rbm_layers[i], rbm_layers[i+1]))
# 定义训练整个深度置信网络的方法
def train(self, visible, epochs=10, k=1):
for rbm in self.rbm_layers:
for epoch in range(epochs):
weights_grad, visible_bias_grad, hidden_bias_grad = rbm.train_step(visible, k)
visible = rbm.recognize(visible)
return weights_grad, visible_bias_grad, hidden_bias_grad
# 测试代码
visible_nodes = 784 # 输入层节点数
hidden_nodes = [500, 250, 100] # 隐藏层节点数(每层)
rbm_layers = [visible_nodes] + hidden_nodes
# 创建深度置信网络
dbn = DeepBeliefNetwork(rbm_layers)
# 加载数据等预处理步骤
# ...
# 训练深度置信网络
weights_grad, visible_bias_grad, hidden_bias_grad = dbn.train(visible_data, epochs=10, k=1)
```
以上代码将创建一个包含3个受限玻尔兹曼机层的深度置信网络,并提供了`recognize`(识别)和`generate`(生成)方法来执行训练和预测。`train`方法可以用来训练整个深度置信网络。其中的训练步骤使用了梯度下降算法来更新网络中的权重、可见层偏置项和隐藏层偏置项。请注意,这只是深度置信网络的一个简单示例,实际应用中可能需要进行更多的优化和调整。
### 回答2:
深度置信网络(Deep Belief Network, DBN)是一种无监督学习算法,由多层受限玻尔兹曼机(Restricted Boltzmann Machines, RBM)组成,用于学习输入数据的分布和特征表示。下面是使用Python实现深度置信网络的示例代码:
```python
import numpy as np
import tensorflow as tf
class DeepBeliefNetwork:
def __init__(self, n_visible, n_hidden, n_layers):
self.layers = []
for i in range(n_layers):
if i == 0:
input_size = n_visible
else:
input_size = n_hidden[i-1]
rbm = RBM(input_size, n_hidden[i])
self.layers.append(rbm)
def train(self, X, lr=0.1, epochs=10):
for layer in self.layers:
layer.train(X, lr, epochs)
X = layer.transform(X)
def transform(self, X):
for layer in self.layers:
X = layer.transform(X)
return X
class RBM:
def __init__(self, n_visible, n_hidden):
self.n_visible = n_visible
self.n_hidden = n_hidden
self.weights = tf.Variable(tf.random.normal([n_visible, n_hidden], mean=0.0, stddev=0.01))
self.visible_bias = tf.Variable(tf.zeros([n_visible]))
self.hidden_bias = tf.Variable(tf.zeros([n_hidden]))
def sample_hidden(self, visible):
hidden_prob = tf.nn.sigmoid(tf.matmul(visible, self.weights) + self.hidden_bias)
hidden = self._binary_sample(hidden_prob)
return hidden
def sample_visible(self, hidden):
visible_prob = tf.nn.sigmoid(tf.matmul(hidden, tf.transpose(self.weights)) + self.visible_bias)
visible = self._binary_sample(visible_prob)
return visible
def _binary_sample(self, prob):
return tf.nn.relu(tf.sign(prob - tf.random.uniform(tf.shape(prob))))
def train(self, X, lr, epochs):
for epoch in range(epochs):
for i in range(X.shape[0]):
visible = X[i:i+1]
hidden = self.sample_hidden(visible)
reconstructed_visible = self.sample_visible(hidden)
reconstructed_hidden = self.sample_hidden(reconstructed_visible)
positive_grad = tf.matmul(tf.transpose(visible), hidden)
negative_grad = tf.matmul(tf.transpose(reconstructed_visible), reconstructed_hidden)
self.weights.assign_add(lr * (positive_grad - negative_grad))
self.visible_bias.assign_add(lr * tf.reduce_mean(visible - reconstructed_visible, 0))
self.hidden_bias.assign_add(lr * tf.reduce_mean(hidden - reconstructed_hidden, 0))
```
以上是一个简单的深度置信网络的Python实现。这段代码使用TensorFlow库实现了深度置信网络的训练和转换功能。在初始化DBN时,可以指定输入层、输出层的维度和隐藏层数。通过训练函数`train()`可以对网络进行训练,训练数据通过参数X传入。训练完成后,可以使用`transform()`函数对数据进行转换,得到特征表示。内部实现使用了RBM类来构建每一层的受限玻尔兹曼机,通过无监督的逐层训练来实现深度学习的目的。
阅读全文