用dqn算法出一个matlab求最短路径的题并给出代码
时间: 2024-03-25 15:40:08 浏览: 92
以下是使用DQN算法求解最短路径问题的Matlab代码:
```matlab
% DQN Algorithm for Shortest Path Problem
% Initialize graph and start/end nodes
graph = [0 1 1 inf; 1 0 inf 1; 1 inf 0 1; inf 1 1 0];
startNode = 1;
endNode = 4;
% Initialize replay memory D
D = [];
% Initialize Q-network with random weights
Q = randn(size(graph,1), size(graph,2));
% Initialize target Q-network with same weights as Q-network
QTarget = Q;
% Initialize action selection parameters
epsilon = 1; % exploration rate
minEpsilon = 0.1; % minimum exploration rate
epsilonDecayRate = 0.0001; % exploration rate decay rate
% Initialize other hyperparameters
batchSize = 32; % minibatch size
gamma = 0.99; % discount factor
maxSteps = 10000; % maximum number of steps per episode
% Start training
for episode = 1:numEpisodes
% Initialize state
state = startNode;
% Initialize episode variables
totalReward = 0;
step = 0;
% Loop over steps in episode
while step < maxSteps
% Choose action according to epsilon-greedy policy
if rand() < epsilon
action = randi(size(graph,2));
else
[~, action] = min(Q(state,:));
end
% Take action and observe next state and reward
nextState = action;
reward = -graph(state,action);
% Store transition in replay memory
D = [D; state, action, reward, nextState];
% Update state and total reward
state = nextState;
totalReward = totalReward + reward;
% Sample minibatch from replay memory
minibatch = D(randi(size(D,1),batchSize,1),:);
% Compute target Q-values
targetQ = minibatch(:,3) + gamma*max(QTarget(minibatch(:,4),:),[],2);
% Compute predicted Q-values
predictedQ = Q(minibatch(:,1),minibatch(:,2));
% Compute loss and update Q-network
loss = mean((targetQ - predictedQ).^2);
Q(minibatch(:,1),minibatch(:,2)) = Q(minibatch(:,1),minibatch(:,2)) + alpha*(targetQ - predictedQ);
% Update target Q-network every C steps
if mod(step,C) == 0
QTarget = Q;
end
% Decay exploration rate
epsilon = max(minEpsilon, epsilon - epsilonDecayRate);
% Check if episode is done
if state == endNode
break;
end
% Increment step counter
step = step + 1;
end
% Print episode statistics
fprintf('Episode %d: total reward = %.2f, epsilon = %.2f\n', episode, totalReward, epsilon);
end
% Compute shortest path
currentNode = startNode;
shortestPath = [currentNode];
while currentNode ~= endNode
[~, action] = min(Q(currentNode,:));
currentNode = action;
shortestPath = [shortestPath, currentNode];
end
% Print shortest path
fprintf('Shortest path: ');
fprintf('%d ', shortestPath);
fprintf('\n');
```
在这个示例中,我们使用了一个4个节点的简单图,其中每个节点之间的距离表示为权重。我们使用DQN算法来寻找从起点到终点的最短路径。在每个步骤中,我们选择一个动作(即下一个节点),并计算奖励(即该动作所代表的边的权重的负值)。我们将每个状态转换和相关信息存储在回放内存中,并使用它们来更新我们的Q网络。我们使用epsilon贪婪策略来选择动作,以便在探索和利用之间进行权衡。我们使用Q网络来计算最短路径,并打印输出。
阅读全文