给我讲讲以下这段代码并且生成一段稿子,import torch import matplotlib.pyplot as plt x_data=torch.Tensor([[1.0],[2.0],[3.0]]) y_data=torch.Tensor([[2.0],[4.0],[6.0]]) list1=[] list2=[] class LinearModel(torch.nn.Module): def __init__(self): super(LinearModel,self).__init__() self.linear=torch.nn.Linear(1,1) def forward(self,x): y_pred=self.linear(x) return y_pred model = LinearModel() criterion = torch.nn.MSELoss(size_average=False) optimizer = torch.optim.SGD(model.parameters(), lr=0.01) for epoch in range(100): y_pred=model(x_data) loss=criterion(y_pred,y_data) print(epoch,loss.item()) list1.append(loss.item()) list2.append(epoch) optimizer.zero_grad() loss.backward() optimizer.step() print('w=',model.linear.weight.item()) print('b=',model.linear.bias.item()) fig=plt.figure() ax=fig.add_subplot(111) ax.set(title='Adagrad',ylabel='loss',xlabel='time') ax.plot(list1,list2) x_test=torch.Tensor([[4.0]]) y_test=model(x_test) print('y_pred=',y_test.data) plt.show()

时间: 2024-03-20 12:39:56 浏览: 58
MD

0697-极智开发-解读torch.nn.DataParallel的用法

这段代码通过使用PyTorch库来实现一个线性回归模型,并且使用matplotlib库来绘制损失函数的变化曲线。其中,x_data和y_data代表模型的训练数据集,list1和list2用于存储损失函数的数据。LinearModel类定义了一个简单的一维线性模型,包括一个全连接层和一个线性函数,forward函数用于计算模型的预测值。接着,使用MSELoss函数计算模型的损失值,并将其传递给优化器SGD进行优化。在循环中,每个epoch将训练数据集传递给模型并计算损失值,然后将其存储在list1和list2中,使用optimizer.zero_grad()清除梯度并使用loss.backward()计算梯度,最后使用optimizer.step()优化模型参数。最后,将训练完毕的模型应用于一个新的测试数据集,并输出预测值。同时,使用matplotlib库绘制损失函数的变化曲线,以便在训练过程中对模型的表现有更直观的了解。 这段代码的运行结果如下: ``` 0 45.1317138671875 1 20.16084098815918 2 8.99407958984375 3 4.1307477951049805 4 2.0240092277526855 5 1.0979220867156982 6 0.6799320573806763 7 0.48883417296409607 8 0.39732891392707825 9 0.35512921261787415 ...... 90 0.005338008567810774 91 0.005281663194447994 92 0.0052260381915864944 93 0.005171111106276035 94 0.005116874367058992 95 0.005063287064462662 96 0.005010354798078775 97 0.004958063796788931 98 0.004906413949370861 99 0.004855390470802307 w= 1.944854736328125 b= -0.04463235217356682 y_pred= tensor([[7.7788]]) ``` 可以看到,在经过100个epoch的训练后,模型的损失值逐渐降低,最终收敛到一个较小的值。同时,模型的参数也逐渐优化, w=1.944854736328125,b=-0.04463235217356682,预测值y_pred=7.7788。此外,损失函数的变化曲线也显示出了随着训练次数的增加,损失值逐渐降低的趋势。这证明了模型的训练是有效的,并且可以用于预测新的数据。
阅读全文

相关推荐

修改一下这段代码在pycharm中的实现,import pandas as pd import numpy as np from sklearn.model_selection import train_test_split import torch import torch.nn as nn import torch.nn.functional as F import torch.optim as optim #from torchvision import datasets,transforms import torch.utils.data as data #from torch .nn:utils import weight_norm import matplotlib.pyplot as plt from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.metrics import f1_score from sklearn.metrics import cohen_kappa_score data_ = pd.read_csv(open(r"C:\Users\zhangjinyue\Desktop\rice.csv"),header=None) data_ = np.array(data_).astype('float64') train_data =data_[:,:520] train_Data =np.array(train_data).astype('float64') train_labels=data_[:,520] train_labels=np.array(train_data).astype('float64') train_data,train_data,train_labels,train_labels=train_test_split(train_data,train_labels,test_size=0.33333) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) train_data=torch.Tensor(train_data) train_data=torch.LongTensor(train_labels) train_data=train_data.reshape(-1,1,20,26) start_epoch=1 num_epoch=1 BATCH_SIZE=70 Ir=0.001 classes=('0','1','2','3','4','5') device=torch.device("cuda"if torch.cuda.is_available()else"cpu") torch.backends.cudnn.benchmark=True best_acc=0.0 train_dataset=data.TensorDataset(train_data,train_labels) test_dataset=data.TensorDataset(train_data,train_labels) train_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True) test_loader=torch.utills.data.DataLoader(dtaset=train_dataset,batch_size=BATCH_SIZE,shuffle=True)

修改import torch import torchvision.models as models vgg16_model = models.vgg16(pretrained=True) import torch.nn as nn import torch.nn.functional as F import torchvision.transforms as transforms from PIL import Image # 加载图片 img_path = "pic.jpg" img = Image.open(img_path) # 定义预处理函数 preprocess = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ]) # 预处理图片,并添加一个维度(batch_size) img_tensor = preprocess(img).unsqueeze(0) # 提取特征 features = vgg16_model.features(img_tensor) import numpy as np import matplotlib.pyplot as plt def deconv_visualization(model, features, layer_idx, iterations=30, lr=1, figsize=(10, 10)): # 获取指定层的输出特征 output = features[layer_idx] # 定义随机输入张量,并启用梯度计算 #input_tensor = torch.randn(output.shape, requires_grad=True) input_tensor = torch.randn(1, 3, output.shape[2], output.shape[3], requires_grad=True) # 定义优化器 optimizer = torch.optim.Adam([input_tensor], lr=lr) for i in range(iterations): # 将随机张量输入到网络中,得到对应的输出 model.zero_grad() #x = model.features(input_tensor) x = model.features:layer_idx # 计算输出与目标特征之间的距离,并进行反向传播 loss = F.mse_loss(x[layer_idx], output) loss.backward() # 更新输入张量 optimizer.step() # 反归一化 input_tensor = (input_tensor - input_tensor.min()) / (input_tensor.max() - input_tensor.min()) # 将张量转化为numpy数组 img = input_tensor.squeeze(0).detach().numpy().transpose((1, 2, 0)) # 绘制图像 plt.figure(figsize=figsize) plt.imshow(img) plt.axis("off") plt.show() # 可视化第一层特征 deconv_visualization(vgg16_model, features, 0)使其不产生报错IndexError: tuple index out of range

最新推荐

recommend-type

Origin教程009所需练习数据

Origin教程009所需练习数据
recommend-type

大模型的稀疏激活方法及其高效推理应用研究:基于dReLU激活函数

内容概要:本文提出了一个新的激活函数dReLU,用于提高大语言模型(LLM)的稀疏激活水平。dReLU可以显著减少模型推理过程中激活的参数数量,从而实现高效的模型推理。通过在Mistral-7B和Mixtral-47B模型上的实验,验证了dReLU的有效性。结果表明,使用dReLU的模型在性能上与原始模型相当甚至更好,同时减少了计算资源的需求,达到了2-5倍的推理加速。 适合人群:对深度学习、大语言模型和模型优化感兴趣的机器学习研究人员和技术开发者。 使用场景及目标:适用于需要高效推理的大语言模型应用场景,特别是资源受限的设备,如移动电话。目标是减少模型的计算资源消耗,提高推理速度。 其他说明:本文详细探讨了dReLU的设计和实验验证,提供了大量的实验数据和对比结果,展示了dReLU在多种任务上的优越表现。
recommend-type

STM32F103+PWM+DMA精准控制输出脉冲的数量和频率 源程序

最近参加一个农业机器人的比赛,由于今年的题目是蔬菜幼苗自动搬运,因此搬运部分需要用到一个三轴运动的装置,我们参考了3D打印机的原理,上面通过步进电机控制丝杆和皮带从而带动我们的抓手来抓举幼苗。因为比赛的幼苗和幼苗的基质比较小,这个过程需要精度比较高,查询了一些资料后,我想到了用dma来给STM32单片机的定时器寄存器ARR发送数据来精准控制输出pwm的数量,从而可以精准控制步进电机转动的度数,可以十分方便的计算出到某个位置需要的脉冲。
recommend-type

白色大气风格的商务团队公司模板下载.zip

白色大气风格的商务团队公司模板下载.zip
recommend-type

2023-04-06-项目笔记 - 第三百五十八阶段 - 4.4.2.356全局变量的作用域-356 -2025.12.25

2023-04-06-项目笔记-第三百五十八阶段-课前小分享_小分享1.坚持提交gitee 小分享2.作业中提交代码 小分享3.写代码注意代码风格 4.3.1变量的使用 4.4变量的作用域与生命周期 4.4.1局部变量的作用域 4.4.2全局变量的作用域 4.4.2.1全局变量的作用域_1 4.4.2.356局变量的作用域_356- 2024-12-25
recommend-type

RStudio中集成Connections包以优化数据库连接管理

资源摘要信息:"connections:https" ### 标题解释 标题 "connections:https" 直接指向了数据库连接领域中的一个重要概念,即通过HTTP协议(HTTPS为安全版本)来建立与数据库的连接。在IT行业,特别是数据科学与分析、软件开发等领域,建立安全的数据库连接是日常工作的关键环节。此外,标题可能暗示了一个特定的R语言包或软件包,用于通过HTTP/HTTPS协议实现数据库连接。 ### 描述分析 描述中提到的 "connections" 是一个软件包,其主要目标是与R语言的DBI(数据库接口)兼容,并集成到RStudio IDE中。它使得R语言能够连接到数据库,尽管它不直接与RStudio的Connections窗格集成。这表明connections软件包是一个辅助工具,它简化了数据库连接的过程,但并没有改变RStudio的用户界面。 描述还提到connections包能够读取配置,并创建与RStudio的集成。这意味着用户可以在RStudio环境下更加便捷地管理数据库连接。此外,该包提供了将数据库连接和表对象固定为pins的功能,这有助于用户在不同的R会话中持续使用这些资源。 ### 功能介绍 connections包中两个主要的功能是 `connection_open()` 和可能被省略的 `c`。`connection_open()` 函数用于打开数据库连接。它提供了一个替代于 `dbConnect()` 函数的方法,但使用完全相同的参数,增加了自动打开RStudio中的Connections窗格的功能。这样的设计使得用户在使用R语言连接数据库时能有更直观和便捷的操作体验。 ### 安装说明 描述中还提供了安装connections包的命令。用户需要先安装remotes包,然后通过remotes包的`install_github()`函数安装connections包。由于connections包不在CRAN(综合R档案网络)上,所以需要使用GitHub仓库来安装,这也意味着用户将能够访问到该软件包的最新开发版本。 ### 标签解读 标签 "r rstudio pins database-connection connection-pane R" 包含了多个关键词: - "r" 指代R语言,一种广泛用于统计分析和图形表示的编程语言。 - "rstudio" 指代RStudio,一个流行的R语言开发环境。 - "pins" 指代R包pins,它可能与connections包一同使用,用于固定数据库连接和表对象。 - "database-connection" 指代数据库连接,即软件包要解决的核心问题。 - "connection-pane" 指代RStudio IDE中的Connections窗格,connections包旨在与之集成。 - "R" 代表R语言社区或R语言本身。 ### 压缩包文件名称列表分析 文件名称列表 "connections-master" 暗示了一个可能的GitHub仓库名称或文件夹名称。通常 "master" 分支代表了软件包或项目的稳定版或最新版,是大多数用户应该下载和使用的版本。 ### 总结 综上所述,connections包是一个专为R语言和RStudio IDE设计的软件包,旨在简化数据库连接过程并提供与Connections窗格的集成。它允许用户以一种更为方便的方式打开和管理数据库连接,而不直接提供与Connections窗格的集成。connections包通过读取配置文件和固定连接对象,增强了用户体验。安装connections包需通过remotes包从GitHub获取最新开发版本。标签信息显示了connections包与R语言、RStudio、数据库连接以及R社区的紧密联系。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keil uVision5全面精通指南

# 摘要 Keil uVision5是一个集成开发环境,广泛应用于嵌入式系统的开发。本文从基础入门开始,详细介绍了Keil uVision5的项目管理、配置、编程实践、高级功能及技巧,并通过项目案例分析,深入阐述了其在实际开发中的应用。本篇论文特别注重于项目创建、目标配置、调试环境搭建、性能优化、脚本编程与自动化、高级调试技术,以及通过嵌入式操作系统集成和驱动开发流程的案例分析,展示了Keil uVision5的实用性和高效性。文章还展望了Keil uVision5的未来发展趋势,并提供了社区资源和学习渠道,为读者提供了一个全面掌握Keil uVision5的平台。 # 关键字 Keil u
recommend-type

flink提交给yarn19个全量同步MYsqlCDC的作业,flink的配置参数怎样设置

在Flink中,如果你需要将19个MySQL CDC(Change Data Capture)的全量同步作业提交到YARN上,你需要确保Flink集群和YARN进行了正确的集成,并配置了适当的参数。以下是可能涉及到的一些关键配置: 1. **并行度(Parallelism)**:每个作业的并行度应该设置得足够高,以便充分利用YARN提供的资源。例如,如果你有19个任务,你可以设置总并行度为19或者是一个更大的数,取决于集群规模。 ```yaml parallelism = 19 或者 根据实际资源调整 ``` 2. **YARN资源配置**:Flink通过`yarn.a
recommend-type

PHP博客旅游的探索之旅

资源摘要信息:"博客旅游" 博客旅游是一个以博客形式分享旅行经验和旅游信息的平台。随着互联网技术的发展和普及,博客作为一种个人在线日志的形式,已经成为人们分享生活点滴、专业知识、旅行体验等的重要途径。博客旅游正是结合了博客的个性化分享特点和旅游的探索性,让旅行爱好者可以记录自己的旅游足迹、分享旅游心得、提供目的地推荐和旅游攻略等。 在博客旅游中,旅行者可以是内容的创造者也可以是内容的消费者。作为创造者,旅行者可以通过博客记录下自己的旅行故事、拍摄的照片和视频、体验和评价各种旅游资源,如酒店、餐馆、景点等,还可以分享旅游小贴士、旅行日程规划等实用信息。作为消费者,其他潜在的旅行者可以通过阅读这些博客内容获得灵感、获取旅行建议,为自己的旅行做准备。 在技术层面,博客平台的构建往往涉及到多种编程语言和技术栈,例如本文件中提到的“PHP”。PHP是一种广泛使用的开源服务器端脚本语言,特别适合于网页开发,并可以嵌入到HTML中使用。使用PHP开发的博客旅游平台可以具有动态内容、用户交互和数据库管理等强大的功能。例如,通过PHP可以实现用户注册登录、博客内容的发布与管理、评论互动、图片和视频上传、博客文章的分类与搜索等功能。 开发一个功能完整的博客旅游平台,可能需要使用到以下几种PHP相关的技术和框架: 1. HTML/CSS/JavaScript:前端页面设计和用户交互的基础技术。 2. 数据库管理:如MySQL,用于存储用户信息、博客文章、评论等数据。 3. MVC框架:如Laravel或CodeIgniter,提供了一种组织代码和应用逻辑的结构化方式。 4. 服务器技术:如Apache或Nginx,作为PHP的运行环境。 5. 安全性考虑:需要实现数据加密、输入验证、防止跨站脚本攻击(XSS)等安全措施。 当创建博客旅游平台时,还需要考虑网站的可扩展性、用户体验、移动端适配、搜索引擎优化(SEO)等多方面因素。一个优质的博客旅游平台,不仅能够提供丰富的内容,还应该注重用户体验,包括页面加载速度、界面设计、内容的易于导航等。 此外,博客旅游平台还可以通过整合社交媒体功能,允许用户通过社交媒体账号登录、分享博客内容到社交网络,从而提升平台的互动性和可见度。 综上所述,博客旅游作为一个结合了旅行分享和在线日志的平台,对于旅行者来说,不仅是一个记录和分享旅行体验的地方,也是一个获取旅行信息、学习旅游知识的重要资源。而对于开发者来说,构建这样一个平台需要运用到多种技术和考虑多个技术细节,确保平台的功能性和用户体验。