origin_input = Input(shape=(time_step, features)) # 模型输入 time_step*(N+1),N为分解所得分量数 cominput = origin_input[:, :, 1:] # 分解所得分量构成的序列 time_step*N output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) # 拼接所得结果经全连接层进行降维&转换 res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1) output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) output = Dense(1, activation='sigmoid')(out) model = Model(inputs=origin_input, outputs=output, name='proposed_model') opt = tf.keras.optimizers.Adam(learning_rate=0.001) model.compile(loss=losses.mse, optimizer=opt) model.summary() lr_reducer = ReduceLROnPlateau(factor=0.5, patience=5) callbacks = [lr_reducer] model.fit(x_train_scaled, y_train_scaled, epochs=100, batch_size=512, validation_split=0.1, callbacks=callbacks)

时间: 2023-09-17 21:13:40 浏览: 41
上述代码中第一个cnn的输入是 `tf.expand_dims(cominput[:, :, ts], axis=-1)`,其中 `cominput` 是分解所得分量构成的序列,`ts` 是一个循环变量,表示分量的索引,`axis=-1` 表示在最后一个维度上添加一个新的维度。具体来说,`cominput[:, :, ts]` 表示对输入数据的第二维和第三维进行切片,取出所有的时间步和第 `ts` 个分量,然后将其扩展为形状为 `(batch_size, time_step, 1)` 的张量,作为第一个 CNN 的输入。
相关问题

origin_input = Input(shape=(time_step, features)) cominput = origin_input[:, :, 1:] output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1)""" output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) output = Dense(1, activation='sigmoid')(out)

给定的代码片段是一个使用时间注意力机制的神经网络模型。该模型的输入是一个形状为 `(time_step, features)` 的张量。 下面是这段代码的解释: ```python origin_input = Input(shape=(time_step, features)) # 原始输入 cominput = origin_input[:, :, 1:] # 从原始输入中获取除第一个特征之外的其它特征 # 对每个特征应用一个卷积层,并将结果拼接起来 output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) # 添加一个全连接层 output = Dense(64, activation='relu')(output) # 对原始输入的第一个特征应用一个卷积层,并将结果与前面的输出拼接起来 res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1) # 双向GRU层 output = Bidirectional(GRU(64, return_sequences=True))(output) output = Bidirectional(GRU(64, return_sequences=True))(output) # 时间注意力机制 time_last = tf.transpose(output, [0, 2, 1]) att_1 = Dense(time_step, activation='tanh')(time_last) att_2 = Dense(time_step, activation='softmax', use_bias=False)(att_1) time_att = Multiply()([time_last, att_2]) out = tf.reduce_sum(time_att, axis=-1) # 最终的输出层 output = Dense(1, activation='sigmoid')(out) ``` 在这段代码中,我们首先从原始输入中提取除第一个特征之外的其它特征,并对每个特征应用一个卷积层。然后,我们将这些卷积层的输出与原始输入的第一个特征经过一个卷积层的结果拼接在一起。接下来,我们使用双向GRU层来处理这些拼接后的特征。然后,我们使用时间注意力机制对GRU层的输出进行加权求和,得到最终的输出。最后,我们使用一个全连接层将加权求和后的结果映射到一个sigmoid激活函数上。 请注意,给定的代码片段中使用了一些尚未定义的库和函数(如`Conv1D`、`Dense`、`Bidirectional`、`Multiply`等)。你需要确保在运行代码之前导入这些库并定义这些函数。

origin_input = Input(shape=(time_step, features)) cominput = origin_input[:, :, 1:] output = concatenate( [Conv1D(kernel_size=3, filters=64, activation='relu', padding='same')(tf.expand_dims(cominput[:, :, ts], axis=-1)) for ts in range(features-1)], axis=-1) output = Dense(64, activation='relu')(output) res = Conv1D(kernel_size=1, filters=64, activation='relu')(tf.expand_dims(origin_input[:, :, 0], axis=-1)) output = concatenate((output, res), axis=-1)

这段代码看起来是使用 Keras 搭建了一个卷积神经网络模型。其中,原始输入数据的形状为 (time_step, features),经过 cominput = origin_input[:, :, 1:] 处理后,删除了原始输入数据中的第一个特征,即保留了 time_step 行、features-1 列的数据。接着,使用 Conv1D 函数进行卷积操作,使用 Dense 函数添加一个全连接层,再使用 Conv1D 函数添加一个 1x1 的卷积层。最后,使用 concatenate 函数将输出结果和原始输入数据中的第一个特征进行拼接,得到最终的输出结果。

相关推荐

逐行详细解释以下代码并加注释from tensorflow import keras import matplotlib.pyplot as plt base_image_path = keras.utils.get_file( "coast.jpg", origin="https://img-datasets.s3.amazonaws.com/coast.jpg") plt.axis("off") plt.imshow(keras.utils.load_img(base_image_path)) #instantiating a model from tensorflow.keras.applications import inception_v3 model = inception_v3.InceptionV3(weights='imagenet',include_top=False) #配置各层对DeepDream损失的贡献 layer_settings = { "mixed4": 1.0, "mixed5": 1.5, "mixed6": 2.0, "mixed7": 2.5, } outputs_dict = dict( [ (layer.name, layer.output) for layer in [model.get_layer(name) for name in layer_settings.keys()] ] ) feature_extractor = keras.Model(inputs=model.inputs, outputs=outputs_dict) #定义损失函数 import tensorflow as tf def compute_loss(input_image): features = feature_extractor(input_image) loss = tf.zeros(shape=()) for name in features.keys(): coeff = layer_settings[name] activation = features[name] loss += coeff * tf.reduce_mean(tf.square(activation[:, 2:-2, 2:-2, :])) return loss #梯度上升过程 @tf.function def gradient_ascent_step(image, learning_rate): with tf.GradientTape() as tape: tape.watch(image) loss = compute_loss(image) grads = tape.gradient(loss, image) grads = tf.math.l2_normalize(grads) image += learning_rate * grads return loss, image def gradient_ascent_loop(image, iterations, learning_rate, max_loss=None): for i in range(iterations): loss, image = gradient_ascent_step(image, learning_rate) if max_loss is not None and loss > max_loss: break print(f"... Loss value at step {i}: {loss:.2f}") return image #hyperparameters step = 20. num_octave = 3 octave_scale = 1.4 iterations = 30 max_loss = 15. #图像处理方面 import numpy as np def preprocess_image(image_path): img = keras.utils.load_img(image_path) img = keras.utils.img_to_array(img) img = np.expand_dims(img, axis=0) img = keras.applications.inception_v3.preprocess_input(img) return img def deprocess_image(img): img = img.reshape((img.shape[1], img.shape[2], 3)) img /= 2.0 img += 0.5 img *= 255. img = np.clip(img, 0, 255).astype("uint8") return img #在多个连续 上运行梯度上升 original_img = preprocess_image(base_image_path) original_shape = original_img.shape[1:3] successive_shapes = [original_shape] for i in range(1, num_octave): shape = tuple([int(dim / (octave_scale ** i)) for dim in original_shape]) successive_shapes.append(shape) successive_shapes = successive_shapes[::-1] shrunk_original_img = tf.image.resize(original_img, successive_shapes[0]) img = tf.identity(original_img) for i, shape in enumerate(successive_shapes): print(f"Processing octave {i} with shape {shape}") img = tf.image.resize(img, shape) img = gradient_ascent_loop( img, iterations=iterations, learning_rate=step, max_loss=max_loss ) upscaled_shrunk_original_img = tf.image.resize(shrunk_original_img, shape) same_size_original = tf.image.resize(original_img, shape) lost_detail = same_size_original - upscaled_shrunk_original_img img += lost_detail shrunk_original_img = tf.image.resize(original_img, shape) keras.utils.save_img("DeepDream.png", deprocess_image(img.numpy()))

最新推荐

recommend-type

Nginx配置跨域请求Access-Control-Allow-Origin * 详解

主要给大家介绍了关于Nginx配置跨域请求Access-Control-Allow-Origin * 的相关资料,文中通过示例代码介绍的非常详细,对大家学习或者使用Nginx具有一定的参考学习价值,需要的朋友们下面来一起学习学习吧
recommend-type

微信小程序-番茄时钟源码

微信小程序番茄时钟的源码,支持进一步的修改。番茄钟,指的是把工作任务分解成半小时左右,集中精力工作25分钟后休息5分钟,如此视作种一个“番茄”,而“番茄工作法”的流程能使下一个30分钟更有动力。
recommend-type

激光雷达专题研究:迈向高阶智能化关键,前瞻布局把握行业脉搏.pdf

电子元件 电子行业 行业分析 数据分析 数据报告 行业报告
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这