基于卷积神经网络对文本数据集进行二分类,文本为两列分别为lebal和review,lebal为标签列,reveiw为内容列,对标签列进行读取,标签分别为0和1共两类,随机将两类别的各80%作为训练集,20%作为训练集,建立一个传统卷积神经网络,给出详细的代码
时间: 2023-12-06 17:03:49 浏览: 102
动态加载控件及获得sql字段的说明为label
好的,以下是一个基于TensorFlow的传统卷积神经网络进行文本分类的示例代码:
```python
import tensorflow as tf
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from tensorflow.keras.preprocessing.text import Tokenizer
from tensorflow.keras.preprocessing.sequence import pad_sequences
from tensorflow.keras.layers import Embedding, Conv1D, GlobalMaxPooling1D, Dense, Dropout
from tensorflow.keras.models import Sequential
# 读取数据集
data = pd.read_csv('data.csv')
reviews = data['review'].values
labels = data['label'].values
# 将数据集划分为训练集和测试集
train_reviews, test_reviews, train_labels, test_labels = train_test_split(reviews, labels, test_size=0.2, random_state=42)
# 构建词典
tokenizer = Tokenizer(num_words=5000)
tokenizer.fit_on_texts(train_reviews)
# 将文本转换为数字序列
train_sequences = tokenizer.texts_to_sequences(train_reviews)
test_sequences = tokenizer.texts_to_sequences(test_reviews)
# 对数字序列进行填充,使其长度相同
train_sequences = pad_sequences(train_sequences, maxlen=100)
test_sequences = pad_sequences(test_sequences, maxlen=100)
# 构建模型
model = Sequential()
model.add(Embedding(5000, 64, input_length=100))
model.add(Conv1D(64, 5, activation='relu'))
model.add(GlobalMaxPooling1D())
model.add(Dense(1, activation='sigmoid'))
# 编译模型
model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
# 训练模型
model.fit(train_sequences, train_labels, epochs=10, batch_size=64, validation_data=(test_sequences, test_labels))
# 评估模型
test_loss, test_acc = model.evaluate(test_sequences, test_labels)
print('Test accuracy:', test_acc)
```
这段代码中,我们首先读取了CSV格式的数据集,并将其分为训练集和测试集。然后,使用Tokenizer和pad_sequences将文本转换为数字序列,并对数字序列进行填充,使其长度相同。接着,我们构建了一个包含嵌入层、卷积层、全局最大池化层和全连接层的传统卷积神经网络,并使用Adam优化器和二元交叉熵损失函数进行编译。最后,我们使用训练集训练模型,并使用测试集评估模型的性能。
阅读全文