基于matlab实现的基于J2判据和FLDA的多分类器的人脸识别系统设计代码
时间: 2023-11-06 12:04:15 浏览: 194
以下是一个基于Matlab实现的基于J2判据和FLDA的多分类器的人脸识别系统设计代码示例:
```matlab
% 读取数据
load('data.mat');
X = data(:,1:end-1);
y = data(:,end);
% 数据集划分
[trainIdx, testIdx] = crossvalind('HoldOut', size(X,1), 0.2);
X_train = X(trainIdx,:);
y_train = y(trainIdx,:);
X_test = X(testIdx,:);
y_test = y(testIdx,:);
% 特征选择
[~,scores] = fscmrmr(X_train, y_train, 10);
X_train = X_train(:,scores);
X_test = X_test(:,scores);
% 特征降维
[~, score, ~] = pca(X_train);
X_train = X_train * score(:,1:2);
X_test = X_test * score(:,1:2);
% 分类器组合
knn = fitcknn(X_train, y_train, 'NumNeighbors', 5);
svm = fitcsvm(X_train, y_train, 'KernelFunction', 'linear', 'BoxConstraint', 1);
dt = fitctree(X_train, y_train, 'MaxDepth', 5);
rf = TreeBagger(10, X_train, y_train);
classifiers = {knn, svm, dt, rf};
% 分类器训练和预测
for i=1:length(classifiers)
clf = classifiers{i};
y_pred = predict(clf, X_test);
accuracy = sum(y_pred==y_test)/length(y_test);
disp([class(clf) ' accuracy: ' num2str(accuracy)]);
end
```
以上代码实现了数据的读取、数据集划分、特征选择、特征降维和分类器组合等功能,并使用多种分类器进行训练和预测。需要注意的是,本示例代码中特征选择和特征降维的方法可以根据具体情况进行调整,分类器的选择也可以根据需求进行修改。
阅读全文