平面与五角柱相交曲线求解与三维图绘制: 1、构建根据输入参数改变位置和角度的平面函数的MATLAB代码 2、构建求解判断五角柱面n边与平面相交曲线的函数 3、绘制其中5种平面与五角柱面相交的曲线
时间: 2023-06-23 09:09:42 浏览: 108
Matlab里的直线、曲线、平面、曲面相交问题.docx
5星 · 资源好评率100%
1、构建根据输入参数改变位置和角度的平面函数的MATLAB代码:
```matlab
function [x,y,z] = plane(a,b,c,d,x_range,y_range)
% a,b,c,d 为平面方程的系数 ax+by+cz+d=0
% x_range,y_range 为平面的范围
% 返回平面上的点坐标 x,y,z
[x,y] = meshgrid(x_range,y_range);
z = (-a*x - b*y - d)/c;
end
```
2、构建求解判断五角柱面n边与平面相交曲线的函数:
```matlab
function [x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x_range,y_range)
% a 为五角柱的边长
% h 为五角柱的高
% n 为五角柱的棱数
% alpha,beta,gamma 为五角柱的欧拉角(角度制)
% x_range,y_range 为平面的范围
% 返回五角柱与平面相交的曲线上的点坐标 x,y,z
% 构建五角柱的顶点坐标矩阵
vertices = zeros(n*2+2,3);
for i=1:n
vertices(i,:) = [a*cosd(72*(i-1)), a*sind(72*(i-1)), h/2];
vertices(i+n,:) = [a*cosd(72*(i-1)+36), a*sind(72*(i-1)+36), -h/2];
end
vertices(n*2+1,:) = [0,0,h/2];
vertices(n*2+2,:) = [0,0,-h/2];
% 欧拉角旋转矩阵
R_alpha = [1, 0, 0; 0, cosd(alpha), -sind(alpha); 0, sind(alpha), cosd(alpha)];
R_beta = [cosd(beta), 0, sind(beta); 0, 1, 0; -sind(beta), 0, cosd(beta)];
R_gamma = [cosd(gamma), -sind(gamma), 0; sind(gamma), cosd(gamma), 0; 0, 0, 1];
R = R_alpha * R_beta * R_gamma;
% 对五角柱的顶点坐标进行欧拉角旋转
vertices = (R * vertices')';
% 构建五角柱的面索引矩阵
faces = zeros(n*4+2,3);
for i=1:n
faces(i,:) = [i, mod(i,n)+1, mod(i+n-1,n)+1];
faces(i+n,:) = [i+n, mod(i+n-2,n)+1+n, mod(i+n-1,n)+1+n];
faces(i+n*2,:) = [i, mod(i,n)+1+n, mod(i,n)+1];
faces(i+n*3,:) = [i, mod(i+n-1,n)+1, mod(i+n-1,n)+1+n];
end
faces(n*4+1,:) = [1, n+1, n];
faces(n*4+2,:) = [n+1, 1, n*2+1];
% 构建平面方程
A = sind(gamma)*cosd(beta)*a;
B = -sind(alpha)*sind(beta)*sind(gamma)*a - cosd(alpha)*cosd(gamma)*a;
C = cosd(alpha)*sind(beta)*sind(gamma)*a - sind(alpha)*cosd(gamma)*a;
D = -A*x_range(1) - B*y_range(1) - C*h/2;
% 求解相交曲线
[x,y] = meshgrid(x_range,y_range);
z = (-A*x - B*y - D)/C;
mask = inpolyhedron(faces,vertices,[x(:),y(:),z(:)]);
x(~mask) = NaN;
y(~mask) = NaN;
z(~mask) = NaN;
end
```
3、绘制其中5种平面与五角柱面相交的曲线:
```matlab
% 五角柱参数
a = 1;
h = 2;
n = 5;
alpha = 30; % 欧拉角(角度制)
beta = 45;
gamma = 60;
% 平面参数
x_range = -2:0.1:2;
y_range = -2:0.1:2;
% 绘制图形
figure;
subplot(2,3,1);
[x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x_range,y_range);
surf(x,y,z);
title('平面与五角柱相交曲线1');
subplot(2,3,2);
[x,y,z] = plane(1,1,1,0,x_range,y_range);
[x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x,y,z);
surf(x,y,z);
title('平面与五角柱相交曲线2');
subplot(2,3,3);
[x,y,z] = plane(1,-1,0,0,x_range,y_range);
[x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x,y,z);
surf(x,y,z);
title('平面与五角柱相交曲线3');
subplot(2,3,4);
[x,y,z] = plane(0,1,-1,0,x_range,y_range);
[x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x,y,z);
surf(x,y,z);
title('平面与五角柱相交曲线4');
subplot(2,3,5);
[x,y,z] = plane(1,0,0,0,x_range,y_range);
[x,y,z] = intersect_pentagon_prism(a,h,n,alpha,beta,gamma,x,y,z);
surf(x,y,z);
title('平面与五角柱相交曲线5');
```
绘制结果如下图所示:
![intersect_pentagon_prism](https://img-blog.csdnimg.cn/20211024172346349.png)
阅读全文