class HorBlock(nn.Module):# HorBlock模块 r""" HorNet block yoloair """ def __init__(self, dim, drop_path=0., layer_scale_init_value=1e-6, gnconv=gnconv):# dummy super().__init__() self.norm1 = HorLayerNorm(dim, eps=1e-6, data_format='channels_first') self.gnconv = gnconv(dim) self.norm2 = HorLayerNorm(dim, eps=1e-6) self.pwconv1 = nn.Linear(dim, 4 * dim) self.act = nn.GELU() self.pwconv2 = nn.Linear(4 * dim, dim) self.gamma1 = nn.Parameter(layer_scale_init_value * torch.ones(dim), requires_grad=True) if layer_scale_init_value > 0 else None self.gamma2 = nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True) if layer_scale_init_value > 0 else None self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() def forward(self, x): B, C, H, W = x.shape # [512] if self.gamma1 is not None: gamma1 = self.gamma1.view(C, 1, 1) else: gamma1 = 1 x = x + self.drop_path(gamma1 * self.gnconv(self.norm1(x))) input = x x = x.permute(0, 2, 3, 1) # (N, C, H, W) -> (N, H, W, C) x = self.norm2(x) x = self.pwconv1(x) x = self.act(x) x = self.pwconv2(x) if self.gamma2 is not None: x = self.gamma2 * x x = x.permute(0, 3, 1, 2) # (N, H, W, C) -> (N, C, H, W) x = input + self.drop_path(x) return x
时间: 2024-01-26 14:03:23 浏览: 152
这是一个PyTorch中定义的HorBlock模块,它是用于构建卷积神经网络的模块。该模块包含了一些常见的层和操作,比如归一化层、线性层、激活函数等。其前向传递函数的实现过程为:
1. 对输入进行归一化,使用HorLayerNorm层;
2. 对归一化后的输入进行卷积操作,使用gnconv层;
3. 将卷积后的输出再次进行归一化,使用HorLayerNorm层;
4. 对归一化后的输出进行线性变换,使用pwconv1层;
5. 对pwconv1层的输出进行激活函数处理,使用GELU激活函数;
6. 对激活函数处理后的输出进行线性变换,使用pwconv2层;
7. 最后将pwconv2层的输出加上残差输入,并进行一定的dropout处理。
HorBlock模块是横向的卷积块,其可以在卷积神经网络中起到增加模型深度、提升模型性能等作用。
相关问题
class HorNet(nn.Module): # HorNet # hornet by iscyy/yoloair def __init__(self, index, in_chans, depths, dim_base, drop_path_rate=0.,layer_scale_init_value=1e-6, gnconv=[ partial(gnconv, order=2, s=1.0/3.0), partial(gnconv, order=3, s=1.0/3.0), partial(gnconv, order=4, s=1.0/3.0), partial(gnconv, order=5, s=1.0/3.0), # GlobalLocalFilter ], ): super().__init__() dims = [dim_base, dim_base * 2, dim_base * 4, dim_base * 8] self.index = index self.downsample_layers = nn.ModuleList() # stem and 3 intermediate downsampling conv layers hornet by iscyy/air stem = nn.Sequential( nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4), HorLayerNorm(dims[0], eps=1e-6, data_format="channels_first") ) self.downsample_layers.append(stem) for i in range(3): downsample_layer = nn.Sequential( HorLayerNorm(dims[i], eps=1e-6, data_format="channels_first"), nn.Conv2d(dims[i], dims[i+1], kernel_size=2, stride=2), ) self.downsample_layers.append(downsample_layer) self.stages = nn.ModuleList() # 4 feature resolution stages, each consisting of multiples bind residual blocks dummy dp_rates=[x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] if not isinstance(gnconv, list): gnconv = [gnconv, gnconv, gnconv, gnconv] else: gnconv = gnconv assert len(gnconv) == 4 cur = 0 for i in range(4): stage = nn.Sequential( *[HorBlock(dim=dims[i], drop_path=dp_rates[cur + j], layer_scale_init_value=layer_scale_init_value, gnconv=gnconv[i]) for j in range(depths[i])]# hornet by iscyy/air ) self.stages.append(stage) cur += depths[i] self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, (nn.Conv2d, nn.Linear)): nn.init.trunc_normal_(m.weight, std=.02) nn.init.constant_(m.bias, 0) def forward(self, x): x = self.downsample_layers[self.index](x) x = self.stages[self.index](x) return x
这是一个名为HorNet的网络类,它继承自nn.Module。HorNet是一个用于目标检测的神经网络,具体实现了一个由ISCYY/YOLOAIR开发的算法。该网络包括主干网络和特征提取网络。
在__init__函数中,HorNet接受一些参数,包括网络输入通道数、网络深度、特征维度等等。其中主干网络是由几个下采样层(downsample_layers)组成,用于将输入的图片进行缩小和特征提取。特征提取网络是由若干个HorBlock组成的,每个HorBlock包括一些卷积层和归一化层,用于提取特征和进行特征的降维和升维。
在forward函数中,HorNet首先通过下采样层将输入的图像进行缩小,然后通过特征提取网络进行特征提取和降维,最终输出特征图。这个特征图可以用于进行目标检测的后续操作,比如目标框预测和类别分类等。
hornet代码实现
Hornet 的代码实现可以用多种语言实现,例如 Python、C++ 等。
具体实现方法取决于你希望实现的具体功能。如果你是初学者,可以先从学习 Hornet 的概念和基本原理入手,然后再根据需求进行代码实现。
建议使用一些开源代码或教程作为参考,这样可以帮助你更快地了解 Hornet 的代码实现方法。
阅读全文