verilog fft
时间: 2023-05-10 18:00:37 浏览: 177
Verilog FFT,是针对快速傅里叶变换算法实现的一种硬件描述语言。该描述语言使用了基于树型结构的计算方法,从而大大提高了 FFT 算法的运算速度和效率。
在 Verilog FFT 的实现中,主要包含了输入数据读取、蝶形计算、旋转因子的处理、存储结果等模块。在其中,蝶形计算模块是 FFT 算法的核心部分,主要采用蝶形运算结构,将输入数据序列分为两部分,再进行运算操作,从而大大缩短了算法的运算时间。
Verilog FFT 的应用非常广泛,在数字信号处理、音频压缩、图像处理等领域都有重要的应用。可以说,如果没有 Verilog FFT 的应用,很多现代化的数字信号处理系统都将无法实现高速、精确的运算操作。
总之,Verilog FFT 的实现和应用,已经成为数字信号处理和计算机科学领域内的重要研究方向之一。因此,对于计算机科学和电子工程专业的学生来说,掌握 Verilog FFT 的知识和技能,将极大地提高他们的实践能力和竞争力。
相关问题
verilog FFT
FFT(快速傅里叶变换)是一种高效的数字信号处理方法,通常在数字信号处理器(DSP)和数字信号的FPGA实现中使用。在FPGA中实现FFT可以提高处理速度和系统性能。Verilog是一种硬件描述语言,常用于FPGA的设计和实现。
以下是一个实现基于蝶形算法的8点FFT的Verilog代码示例:
```verilog
module fft8(
input [7:0] data_real_in,
input [7:0] data_imag_in,
output [7:0] data_real_out,
output [7:0] data_imag_out
);
reg [7:0] W_real[2:0][2:0];
reg [7:0] W_imag[2:0][2:0];
// 初始化旋转因子
initial begin
W_real[0][0] = 128; W_imag[0][0] = 0;
W_real[0][1] = -86; W_imag[0][1] = -86;
W_real[0][2] = 0; W_imag[0][2] = -128;
W_real[1][0] = 0; W_imag[1][0] = 0;
W_real[1][1] = -121; W_imag[1][1] = 121;
W_real[1][2] = 121; W_imag[1][2] = 121;
W_real[2][0] = 0; W_imag[2][0] = 0;
W_real[2][1] = -86; W_imag[2][1] = 86;
W_real[2][2] = 0; W_imag[2][2] = 128;
end
// 第一级蝶形运算
reg [7:0] t1_real, t1_imag, t2_real, t2_imag;
assign t1_real = data_real_in[0] + data_real_in[4];
assign t1_imag = data_imag_in[0] + data_imag_in[4];
assign t2_real = data_real_in[0] - data_real_in[4];
assign t2_imag = data_imag_in[0] - data_imag_in[4];
assign data_real_out[0] = t1_real + t2_real;
assign data_imag_out[0] = t1_imag + t2_imag;
assign data_real_out[4] = t1_real - t2_real;
assign data_imag_out[4] = t1_imag - t2_imag;
// 第二级蝶形运算
assign t1_real = data_real_in[1] + data_real_in[5];
assign t1_imag = data_imag_in[1] + data_imag_in[5];
assign t2_real = data_real_in[1] - data_real_in[5];
assign t2_imag = data_imag_in[1] - data_imag_in[5];
assign data_real_out[1] = t1_real + W_real[0][1]*t2_real - W_imag[0][1]*t2_imag;
assign data_imag_out[1] = t1_imag + W_real[0][1]*t2_imag + W_imag[0][1]*t2_real;
assign data_real_out[5] = t1_real - W_real[0][1]*t2_real + W_imag[0][1]*t2_imag;
assign data_imag_out[5] = t1_imag - W_real[0][1]*t2_imag - W_imag[0][1]*t2_real;
assign t1_real = data_real_in[2] + data_real_in[6];
assign t1_imag = data_imag_in[2] + data_imag_in[6];
assign t2_real = data_real_in[2] - data_real_in[6];
assign t2_imag = data_imag_in[2] - data_imag_in[6];
assign data_real_out[2] = t1_real + W_real[0][2]*t2_real - W_imag[0][2]*t2_imag;
assign data_imag_out[2] = t1_imag + W_real[0][2]*t2_imag + W_imag[0][2]*t2_real;
assign data_real_out[6] = t1_real - W_real[0][2]*t2_real + W_imag[0][2]*t2_imag;
assign data_imag_out[6] = t1_imag - W_real[0][2]*t2_imag - W_imag[0][2]*t2_real;
assign t1_real = data_real_in[3] + data_real_in[7];
assign t1_imag = data_imag_in[3] + data_imag_in[7];
assign t2_real = data_real_in[3] - data_real_in[7];
assign t2_imag = data_imag_in[3] - data_imag_in[7];
assign data_real_out[3] = t1_real + W_real[0][1]*t2_real - W_imag[0][1]*t2_imag;
assign data_imag_out[3] = t1_imag + W_real[0][1]*t2_imag + W_imag[0][1]*t2_real;
assign data_real_out[7] = t1_real - W_real[0][1]*t2_real + W_imag[0][1]*t2_imag;
assign data_imag_out[7] = t1_imag - W_real[0][1]*t2_imag - W_imag[0][1]*t2_real;
// 第三级蝶形运算
assign t1_real = data_real_out[0] + data_real_out[2];
assign t1_imag = data_imag_out[0] + data_imag_out[2];
assign t2_real = data_real_out[4] + data_real_out[6];
assign t2_imag = data_imag_out[4] + data_imag_out[6];
assign data_real_out[0] = t1_real + t2_real;
assign data_imag_out[0] = t1_imag + t2_imag;
assign data_real_out[4] = t1_real - t2_real;
assign data_imag_out[4] = t1_imag - t2_imag;
assign t1_real = data_real_out[1] + data_real_out[3];
assign t1_imag = data_imag_out[1] + data_imag_out[3];
assign t2_real = W_real[1][1]*data_real_out[5] - W_imag[1][1]*data_imag_out[5];
assign t2_imag = W_real[1][1]*data_imag_out[5] + W_imag[1][1]*data_real_out[5];
assign data_real_out[1] = t1_real + t2_real;
assign data_imag_out[1] = t1_imag + t2_imag;
assign data_real_out[5] = t1_real - t2_real;
assign data_imag_out[5] = t1_imag - t2_imag;
assign t1_real = data_real_out[2] - data_real_out[0];
assign t1_imag = data_imag_out[2] - data_imag_out[0];
assign t2_real = W_real[2][1]*data_real_out[6] - W_imag[2][1]*data_imag_out[6];
assign t2_imag = W_real[2][1]*data_imag_out[6] + W_imag[2][1]*data_real_out[6];
assign data_real_out[2] = t1_real + t2_imag;
assign data_imag_out[2] = t1_imag - t2_real;
assign data_real_out[6] = t1_real - t2_imag;
assign data_imag_out[6] = t1_imag + t2_real;
assign t1_real = data_real_out[3] - data_real_out[1];
assign t1_imag = data_imag_out[3] - data_imag_out[1];
assign t2_real = W_real[1][1]*data_real_out[7] - W_imag[1][1]*data_imag_out[7];
assign t2_imag = W_real[1][1]*data_imag_out[7] + W_imag[1][1]*data_real_out[7];
assign data_real_out[3] = t1_real + t2_imag;
assign data_imag_out[3] = t1_imag - t2_real;
assign data_real_out[7] = t1_real - t2_imag;
assign data_imag_out[7] = t1_imag + t2_real;
endmodule
```
该代码实现了一个8点FFT,并采用了蝶形算法。在代码中,使用了一个三维数组来存储旋转因子,通过初始化来实现。在每个蝶形运算中,使用了多次的加减乘除运算,通过assign语句赋值给输出信号。
需要注意的是,该代码只是一个简单的示例,实际的FFT实现可能需要更多的代码和优化,以满足实际应用的性能和精度要求。
手写Verilog FFT
Sure! Here's an example of a handwritten Verilog code for implementing a Radix-2 Decimation in Time (DIT) Fast Fourier Transform (FFT):
```verilog
module fft (
input wire clk,
input wire reset,
input wire [15:0] x_real,
input wire [15:0] x_imag,
output reg [15:0] X_real,
output reg [15:0] X_imag
);
reg [15:0] twiddle_real[7:0];
reg [15:0] twiddle_imag[7:0];
reg [15:0] stage_real[7:0];
reg [15:0] stage_imag[7:0];
always @(posedge clk or posedge reset) begin
if (reset) begin
for (i = 0; i < 8; i = i + 1) begin
twiddle_real[i] <= 16'h0000;
twiddle_imag[i] <= 16'h0000;
stage_real[i] <= 16'h0000;
stage_imag[i] <= 16'h0000;
end
end else begin
// Twiddle factors calculation
twiddle_real[0] <= 16'h7FFF; // Twiddle factor for stage 1
twiddle_imag[0] <= 16'h0000;
twiddle_real[1] <= 16'h5A82; // Twiddle factor for stage 2
twiddle_imag[1] <= 16'h5A82;
twiddle_real[2] <= 16'h0000; // Twiddle factor for stage 3
twiddle_imag[2] <= 16'h7FFF;
twiddle_real[3] <= -16'h5A82; // Twiddle factor for stage 4
twiddle_imag[3] <= 16'h5A82;
twiddle_real[4] <= -16'h7FFF; // Twiddle factor for stage 5
twiddle_imag[4] <= 16'h0000;
twiddle_real[5] <= -16'h5A82; // Twiddle factor for stage 6
twiddle_imag[5] <= -16'h5A82;
twiddle_real[6] <= 16'h0000; // Twiddle factor for stage 7
twiddle_imag[6] <= -16'h7FFF;
// Butterfly computation
stage_real[0] <= x_real;
stage_imag[0] <= x_imag;
stage_real[1] <= (stage_real[0] + (stage_real[0] >> 8));
stage_imag[1] <= (stage_imag[0] + (stage_imag[0] >> 8));
stage_real[2] <= (stage_real[0] - (stage_real[0] >> 8));
stage_imag[2] <= (stage_imag[0] - (stage_imag[0] >> 8));
stage_real[3] <= (stage_real[1]*twiddle_real[0] - stage_imag[1]*twiddle_imag[0]) >> 15;
stage_imag[3] <= (stage_real[1]*twiddle_imag[0] + stage_imag[1]*twiddle_real[0]) >> 15;
stage_real[4] <= (stage_real[1]*twiddle_real[1] - stage_imag[1]*twiddle_imag[1]) >> 15;
stage_imag[4] <= (stage_real[1]*twiddle_imag[1] + stage_imag[1]*twiddle_real[1]) >> 15;
stage_real[5] <= (stage_real[2]*twiddle_real[2] - stage_imag[2]*twiddle_imag[2]) >> 15;
stage_imag[5] <= (stage_real[2]*twiddle_imag[2] + stage_imag[2]*twiddle_real[2]) >> 15;
stage_real[6] <= (stage_real[2]*twiddle_real[3] - stage_imag[2]*twiddle_imag[3]) >> 15;
stage_imag[6] <= (stage_real[2]*twiddle_imag[3] + stage_imag[2]*twiddle_real[3]) >> 15;
stage_real[7] <= (stage_real[3]*twiddle_real[4] - stage_imag[3]*twiddle_imag[4]) >> 15;
stage_imag[7] <= (stage_real[3]*twiddle_imag[4] + stage_imag[3]*twiddle_real[4]) >> 15;
X_real <= stage_real[7];
X_imag <= stage_imag[7];
end
end
endmodule
```
This code represents an 8-point FFT implementation using fixed-point arithmetic. The input `x_real` and `x_imag` represent the real and imaginary parts of the input samples respectively. The output `X_real` and `X_imag` represent the real and imaginary parts of the FFT result.
Please note that this code is just a basic example, and you may need to modify it according to your specific requirements or design constraints.
阅读全文