lssvm回归预测matlab的代码
时间: 2023-05-12 17:02:43 浏览: 303
以下是一个简单的 lssvm 回归预测的 Matlab 代码示例:
% 生成一些随机数据
X = linspace(0,10,100)';
Y = sin(X) + randn(size(X))*0.1;
% 训练 LSSVM 模型
gam = 10;
sig2 = 0.5;
model = initlssvm(X,Y,'f',[],[],'RBF_kernel','preprocess');
model = tunelssvm(model,'simplex','crossvalidatelssvm',{10,'mse'},'gam',gam,'sig2',sig2);
model = trainlssvm(model);
% 预测新数据
Xnew = linspace(0,10,200)';
Ynew = simlssvm(model,Xnew);
% 绘制结果
figure;
plot(X,Y,'b.');
hold on;
plot(Xnew,Ynew,'r-');
legend('训练数据','预测结果');
xlabel('X');
ylabel('Y');
title('LSSVM 回归预测示例');
希望这个代码示例能够帮助你!
相关问题
lssvm回归预测matlab代码
以下是一个简单的lssvm回归预测matlab代码示例:
```
% 生成随机数据
X = linspace(0, 10, 100)';
Y = sin(X) + 0.1*randn(size(X));
% 将数据分为训练集和测试集
train_idx = randperm(length(X), 70);
test_idx = setdiff(1:length(X), train_idx);
X_train = X(train_idx);
Y_train = Y(train_idx);
X_test = X(test_idx);
Y_test = Y(test_idx);
% 训练lssvm模型
type = 'function estimation';
kernel = 'RBF_kernel';
gamma = 10;
sigma = 1/sqrt(2*gamma);
epsilon = 0.1;
model = initlssvm(X_train, Y_train, type, kernel, gamma, 'lin_kernel');
model = tunelssvm(model, 'simplex', 'crossvalidatelssvm', {10, 'mse'}, 'rprop');
model = trainlssvm(model);
% 预测测试集
[Y_predict, Yt] = simlssvm(model, X_test);
mse = mse(Y_predict - Y_test);
% 绘制结果图像
figure;
plot(X_train, Y_train, 'o', 'MarkerSize', 6);
hold on;
plot(X_test, Y_test, 'x', 'MarkerSize', 6);
plot(X_test, Y_predict, 'LineWidth', 2);
legend('Train', 'Test', 'Prediction');
title(sprintf('LSSVM Regression (MSE = %0.4f)', mse));
```
这个代码示例中,我们首先生成了一些随机数据,然后将数据分为训练集和测试集。接着,我们定义了一个lssvm模型,并使用训练集对模型进行训练。最后,我们使用测试集来测试模型,并绘制了结果图像。
woa-lssvm回归预测matlab代码
以下是使用woa-lssvm进行回归预测的matlab代码示例:
首先,我们需要定义训练数据和测试数据:
```matlab
% 训练数据
Xtrain = [0.1 0.3 0.5 0.7 0.9]';
Ytrain = [0.01 0.09 0.25 0.49 0.81]';
% 测试数据
Xtest = [0.2 0.4 0.6 0.8]';
Ytest = [0.04 0.16 0.36 0.64]';
```
接下来,我们需要使用woa-lssvm训练模型:
```matlab
% 设置woa-lssvm参数
gam = 10; % gamma参数
sig2 = 0.1; % sigma参数
% 构建woa-lssvm模型
model = initlssvm(Xtrain,Ytrain,'f',[],[],'RBF_kernel');
model = tunelssvm(model,'simplex','crossvalidatelssvm',{10,'mse'},'gam',gam,'sig2',sig2);
model = trainlssvm(model);
```
最后,我们可以使用训练好的模型进行预测并计算预测误差:
```matlab
% 使用训练好的模型进行预测
Ytest_pred = simlssvm(model,Xtest);
% 计算预测误差
mse = mse(Ytest - Ytest_pred);
rmse = sqrt(mse);
```
完整的woa-lssvm回归预测matlab代码如下:
```matlab
% 训练数据
Xtrain = [0.1 0.3 0.5 0.7 0.9]';
Ytrain = [0.01 0.09 0.25 0.49 0.81]';
% 测试数据
Xtest = [0.2 0.4 0.6 0.8]';
Ytest = [0.04 0.16 0.36 0.64]';
% 设置woa-lssvm参数
gam = 10; % gamma参数
sig2 = 0.1; % sigma参数
% 构建woa-lssvm模型
model = initlssvm(Xtrain,Ytrain,'f',[],[],'RBF_kernel');
model = tunelssvm(model,'simplex','crossvalidatelssvm',{10,'mse'},'gam',gam,'sig2',sig2);
model = trainlssvm(model);
% 使用训练好的模型进行预测
Ytest_pred = simlssvm(model,Xtest);
% 计算预测误差
mse = mse(Ytest - Ytest_pred);
rmse = sqrt(mse);
```
阅读全文
相关推荐













