写一个基于python的VMD分解一维数据信号代码,并且能够降噪重构信号
时间: 2024-05-01 08:16:38 浏览: 288
以下是一个基于Python的VMD分解一维数据信号并降噪重构信号的代码示例:
```
import numpy as np
import scipy
import scipy.signal
def VMD(x, alpha, tau, K, DC):
# x为输入的一维数据信号
# alpha为VMD的参数,控制每个带通信号的带宽
# tau为VMD的参数,控制带通信号的中心频率
# K为VMD的参数,控制分解出的带通信号的数量
# DC为VMD的参数,控制是否包括直流分量
N = len(x)
k = np.arange(0, N)
omega = 2 * np.pi * k / N
omega = np.fft.fftshift(omega)
fftx = np.fft.fft(x)
fftx = np.fft.fftshift(fftx)
# 初始化带通信号和残差信号
u = np.zeros((K, N))
u_hat = np.zeros((K, N))
u_hat_mean = np.zeros((K, N))
omega_hat = np.zeros((K, N))
omega_hat_mean = np.zeros((K, N))
omega_mean = np.zeros((K, N))
omega_mean_hat = np.zeros((K, N))
res = np.zeros(N)
res_hat = np.zeros(N)
for i in range(K):
omega_hat[i,:] = omega - omega_mean[i,:]
omega_hat_mean[i,:] = omega_mean_hat[i,:] - omega
# 迭代计算每个带通信号和残差信号
for iter in range(100):
for i in range(K):
# 计算每个带通信号的中心频率
omega_mean[i,:] = np.sum(omega_hat[i,:] * np.abs(u_hat[i,:])**2, axis=1) / np.sum(np.abs(u_hat[i,:])**2, axis=1)
# 计算每个带通信号的带宽
omega_hat[i,:] = omega_hat[i,:] - omega_mean[i,:]
omega_hat[i,:] = np.maximum(np.abs(omega_hat[i,:]) - alpha, 0) * np.sign(omega_hat[i,:])
# 计算每个带通信号的频率
omega_mean_hat[i,:] = np.sum(omega_hat[i,:] * np.abs(u_hat[i,:])**2, axis=1) / np.sum(np.abs(u_hat[i,:])**2, axis=1)
# 计算每个带通信号的幅值
u_hat_mean[i,:] = np.sum(u_hat[i,:], axis=0) / N
u[i,:] = np.fft.ifft(np.multiply(u_hat[i,:], np.exp(1j * omega_mean_hat[i,:] * k)))
# 计算残差信号
res = res + u[i,:]
res_hat = np.fft.fft(res)
res_hat_mean = np.sum(res_hat) / N
# 如果需要包括直流分量,则将直流分量加入到残差信号中
if DC:
res_hat[0] = res_hat_mean
else:
res_hat[0] = 0
res = np.fft.ifft(res_hat)
# 将残差信号减去平均值
res = res - np.mean(res)
# 计算每个带通信号的幅值和频率
for i in range(K):
u_hat[i,:] = np.fft.fft(u[i,:])
u_hat[i,:] = np.fft.fftshift(u_hat[i,:])
u_hat[i,:] = u_hat[i,:] - u_hat_mean[i,:]
u_hat[i,:] = np.maximum(np.abs(u_hat[i,:]) - tau, 0) * np.sign(u_hat[i,:])
# 重构信号
x_hat = np.zeros(N)
for i in range(K):
x_hat = x_hat + u[i,:]
x_hat = x_hat + res
return x_hat
# 生成测试数据
t = np.linspace(0, 1, 1000)
x = np.sin(2 * np.pi * 10 * t) + np.sin(2 * np.pi * 20 * t) + np.sin(2 * np.pi * 30 * t) + 0.5 * np.random.randn(len(t))
# 分解信号并重构
x_hat = VMD(x, 100, 0, 3, True)
# 绘制原始信号和重构信号
import matplotlib.pyplot as plt
plt.plot(t, x, label="Original")
plt.plot(t, x_hat, label="Reconstructed")
plt.legend()
plt.show()
```
这段代码首先定义了一个VMD函数,该函数接受一个一维数据信号x以及几个VMD算法的参数。之后,该函数迭代计算每个带通信号和残差信号,并重构信号。最后,该函数返回重构后的信号x_hat。
在主函数中,我们生成了一个测试信号x,该信号是由三个正弦波和一些高斯噪声组成的。我们将该信号输入VMD函数中进行分解和重构,并将原始信号和重构信号绘制在同一个图表中以进行比较。由于VMD算法可以分解信号并降噪重构信号,因此重构信号应该比原始信号更平滑。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20210720083447.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)