用python实现YOLOV5用3×3的卷积核替代spp模块
时间: 2023-08-04 20:38:36 浏览: 122
以下是使用Python实现YOLOv5使用3×3的卷积核替代SPP模块的示例代码:
首先,导入必要的库和模块:
```python
import torch
import torch.nn as nn
```
然后,定义一个新的卷积层类,该类继承自nn.Module类,并使用3×3的卷积核替代SPP模块:
```python
class Conv(nn.Module):
def __init__(self, in_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False):
super(Conv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding, bias=bias)
self.bn = nn.BatchNorm2d(out_channels)
self.act = nn.LeakyReLU(0.1)
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.act(x)
return x
```
接下来,定义一个新的SPP层类,该类继承自nn.Module类,并在其中使用Conv类替代SPP模块:
```python
class SPP(nn.Module):
def __init__(self, in_channels, out_channels):
super(SPP, self).__init__()
reduce_ch = in_channels // 2
self.conv1 = Conv(in_channels, reduce_ch, kernel_size=1, stride=1, padding=0)
self.conv2 = Conv(reduce_ch * 4, out_channels, kernel_size=1, stride=1, padding=0)
self.maxpool1 = nn.MaxPool2d(kernel_size=5, stride=1, padding=2)
self.maxpool2 = nn.MaxPool2d(kernel_size=9, stride=1, padding=4)
self.maxpool3 = nn.MaxPool2d(kernel_size=13, stride=1, padding=6)
def forward(self, x):
x = self.conv1(x)
x1 = self.maxpool1(x)
x2 = self.maxpool2(x)
x3 = self.maxpool3(x)
x = torch.cat((x, x1, x2, x3), dim=1)
x = self.conv2(x)
return x
```
最后,将SPP层替换为Conv类,即可实现YOLOv5使用3×3的卷积核替代SPP模块:
```python
class YOLOv5(nn.Module):
def __init__(self, num_classes=80):
super(YOLOv5, self).__init__()
self.conv1 = Conv(3, 32, kernel_size=3, stride=1, padding=1)
self.spp = Conv(32, 32, kernel_size=3, stride=1, padding=1)
self.conv2 = Conv(32, num_classes, kernel_size=1, stride=1, padding=0, bias=True)
def forward(self, x):
x = self.conv1(x)
x = self.spp(x)
x = self.conv2(x)
return x
```
这样就完成了YOLOv5使用3×3的卷积核替代SPP模块的实现。
阅读全文