package com.lj.als import org.apache.spark.mllib.recommendation.{ALS, Rating} import org.apache.spark.{SparkConf, SparkContext} object Driver { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("als") val sc = new SparkContext(conf) val data = sc.textFile("e://data/als.txt") //--为了满足Spark建模要求: //--RDD[String]->RDD[Rating(userId[Int],itemId[Int],score[Double])] val r1 = data.map { line => val info = line.split(" ") val userId = info(0).toInt val itemId = info(1).toInt val score = info(2).toDouble Rating(userId, itemId, score) } // r1.foreach(println) //--①参:数据集 ②参:隐藏因子数 K,根据实际情况来定 ③参:最大的迭代次数 ④参:λ 正则化参数,防止模型过拟合 val model = ALS.train(r1, 3, 10, 0.01) val u5Result = model.recommendProducts(5, 2) //--下面表示为5号用户,推荐两个商品 val item12Result = model.recommendUsers(12, 1) //--下面表示为12号商品,推荐1个用户 val u3Predict = model.predict(3, 14) //--下面表示预测3号用户对14号商品的评分 u5Result.foreach {println} item12Result.foreach {println} println(u3Predict) } }

时间: 2024-03-18 18:44:56 浏览: 124
ZIP

基于Spark MLlib ALS的音乐推荐系统.zip

star5星 · 资源好评率100%
这是一个使用 Apache Spark 中的 ALS(Alternating Least Squares)算法进行推荐的例子,包含以下步骤: 1. 导入需要使用的包,其中包括 ALS 算法和 Rating 类。 2. 创建 SparkConf 和 SparkContext 对象。 3. 使用 SparkContext 的 textFile 方法读取数据集文件,该文件中每行包含一个用户 ID、一个物品 ID 和一个评分,用空格分隔。 4. 将数据集 RDD[String] 转换为 RDD[Rating],其中每个 Rating 对象包含一个用户 ID、一个物品 ID 和一个评分。 5. 调用 ALS.train 方法,传入 RDD[Rating]、隐藏因子数 K、最大的迭代次数和正则化参数 λ,训练 ALS 模型。 6. 调用 ALS 模型的 recommendProducts 方法,传入一个用户 ID 和要推荐的物品数,得到该用户可能喜欢的物品列表。 7. 调用 ALS 模型的 recommendUsers 方法,传入一个物品 ID 和要推荐的用户数,得到可能喜欢该物品的用户列表。 8. 调用 ALS 模型的 predict 方法,传入一个用户 ID 和一个物品 ID,得到该用户对该物品的评分预测值。 9. 输出结果。 希望对你有所帮助!
阅读全文

相关推荐

最新推荐

recommend-type

使用Spark MLlib给豆瓣用户推荐电影.doc

Spark MLlib作为一个强大的机器学习库,提供了实现推荐系统的关键工具,尤其是交替最小二乘法(ALS)算法,适用于处理大规模的用户-商品评分矩阵,为实现用户推荐提供了解决方案。 交替最小二乘法(Alternating ...
recommend-type

Linux ALSA声卡驱动开发最佳实践.pptx

als-driver 是音频设备的 alsa 内核部分的驱动,集成在内核里面,大多是以模块的方式存在。 在 ALSA 架构中,alsa-driver 的硬件操控层负责实现硬件操纵访问,这也是声卡驱动程序中用户需实现的主要部分。 ALSA ...
recommend-type

电影推荐系统.docx

- **ALS矩阵分解**:是协同过滤的一种实现方法,通过分解用户-电影评分矩阵,找出隐含的特征向量,进行预测。 2.9 组合推荐 组合推荐结合多种推荐算法的优点,如将基于内容的推荐与协同过滤结合,以提高推荐的准确...
recommend-type

尚硅谷大数据技术之电商推荐系统.doc

离线推荐服务使用 Spark Core + Spark MLlib 进行实现,采用 ALS 算法来实现离线推荐。 实时推荐部分 实时推荐部分主要包括日志采集服务、消息缓冲服务和实时推荐服务。日志采集服务使用 Flume-ng 对业务平台中...
recommend-type

环境光传感器(ALS)背光控制解决方案

环境光传感器(ALS)在现代电子设备中扮演着至关重要的角色,特别是在显示器和照明设备的节能及用户体验优化方面。ALS解决方案允许系统根据环境光的强度自动调整显示屏亮度,以达到节省能源和提升视觉舒适度的目的。...
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。