鲸鱼算法的悬架适应度函数代码
时间: 2023-12-31 14:04:12 浏览: 62
鲸鱼算法的适应度函数代码因不同的问题而异,以下是一个简单的示例,适用于求解一个多变量函数的最小值:
```python
import numpy as np
def objective_function(x):
# 计算多变量函数的值,例如 Rosenbrock 函数
n = len(x)
sum = 0
for i in range(n-1):
sum += 100 * (x[i+1] - x[i]**2)**2 + (x[i] - 1)**2
return sum
def fitness_function(population):
# 计算种群中每个个体的适应度值
fitness_values = []
for i in range(len(population)):
fitness_values.append(objective_function(population[i]))
return fitness_values
def whale_algorithm(obj_function, dim, search_space, max_iter, population_size):
# 鲸鱼算法主程序
# obj_function: 目标函数
# dim: 变量个数
# search_space: 变量的搜索范围
# max_iter: 最大迭代次数
# population_size: 种群大小
best_solution = None
best_fitness = np.inf
population = np.random.uniform(low=search_space[0], high=search_space[1], size=(population_size, dim))
fitness_values = fitness_function(population)
for iter in range(max_iter):
a = 2 - 2 * iter / (max_iter - 1) # 控制参数a的值
for i in range(population_size):
r_1 = np.random.rand(dim) # 随机向量
r_2 = np.random.rand(dim) # 随机向量
A = 2 * a * r_1 - a # 更新系数A
C = 2 * r_2 # 更新系数C
l = np.random.uniform(low=-1, high=1) # 选择一个随机值l
p = np.random.rand() # 选择一个随机值p
if p < 0.5:
if abs(A[0]) < 1:
D = abs(C * best_solution - population[i]) # 向最优解靠近
new_solution = best_solution - A * D # 更新个体位置
else:
rand_index = np.random.randint(0, population_size) # 随机选择一个个体
X_rand = population[rand_index]
D = abs(C * X_rand - population[i]) # 向随机个体靠近
new_solution = X_rand - A * D # 更新个体位置
else:
D = abs(best_solution - population[i]) # 向最优解靠近
new_solution = best_solution - A * D - l * D # 更新个体位置
# 边界处理
new_solution = np.clip(new_solution, search_space[0], search_space[1])
# 比较新解的适应度值与旧解的适应度值
new_fitness = obj_function(new_solution)
if new_fitness < fitness_values[i]:
fitness_values[i] = new_fitness
population[i] = new_solution
# 更新全局最优解
best_index = np.argmin(fitness_values)
if fitness_values[best_index] < best_fitness:
best_fitness = fitness_values[best_index]
best_solution = population[best_index]
return best_solution, best_fitness
```
在上述代码中,`objective_function` 函数用于计算多变量函数的值,`fitness_function` 函数用于计算种群中每个个体的适应度值。`whale_algorithm` 函数是鲸鱼算法的主程序,其中 `a` 是控制参数,随着迭代次数的增加逐渐减小,用于控制搜索范围的缩小。在每次迭代中,对于每个个体,算法会根据一定的规则来更新其位置,然后比较新位置与旧位置的适应度值,选择更优者作为个体的新位置。同时,算法还会更新全局最优解。最终,算法返回全局最优解及其适应度值。
阅读全文