请帮我生成一个神经网络的python代码与伪代码流程
时间: 2023-06-12 12:03:45 浏览: 108
好的,以下是一个简单的神经网络的Python代码和伪代码流程:
Python代码:
```
import numpy as np
# 定义sigmoid函数
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 定义神经网络类
class NeuralNetwork:
def __init__(self, input_size, hidden_size, output_size):
# 随机初始化权重
self.W1 = np.random.randn(input_size, hidden_size)
self.W2 = np.random.randn(hidden_size, output_size)
def forward(self, X):
# 前向传播
self.z = np.dot(X, self.W1)
self.z2 = sigmoid(self.z)
self.z3 = np.dot(self.z2, self.W2)
y_hat = sigmoid(self.z3)
return y_hat
def backward(self, X, y, y_hat, learning_rate):
# 反向传播
self.error = y - y_hat
self.delta3 = self.error * sigmoid(self.z3) * (1 - sigmoid(self.z3))
self.dJdW2 = np.dot(self.z2.T, self.delta3)
self.delta2 = np.dot(self.delta3, self.W2.T) * sigmoid(self.z2) * (1 - sigmoid(self.z2))
self.dJdW1 = np.dot(X.T, self.delta2)
# 更新权重
self.W1 += learning_rate * self.dJdW1
self.W2 += learning_rate * self.dJdW2
# 创建神经网络实例
nn = NeuralNetwork(2, 3, 1)
# 训练神经网络
X = np.array([[0,0],[0,1],[1,0],[1,1]])
y = np.array([[0],[1],[1],[0]])
for i in range(5000):
y_hat = nn.forward(X)
nn.backward(X, y, y_hat, 0.1)
# 测试神经网络
print(nn.forward(np.array([0,0])))
print(nn.forward(np.array([0,1])))
print(nn.forward(np.array([1,0])))
print(nn.forward(np.array([1,1])))
```
伪代码流程:
```
输入:
input_size:输入层的大小
hidden_size:隐藏层的大小
output_size:输出层的大小
X:输入的数据
y:目标输出
learning_rate:学习率
输出:
神经网络的输出 y_hat
# 随机初始化权重
W1 = 随机初始化(input_size, hidden_size)
W2 = 随机初始化(hidden_size, output_size)
# 前向传播
z = X * W1
z2 = sigmoid(z)
z3 = z2 * W2
y_hat = sigmoid(z3)
# 反向传播
error = y - y_hat
delta3 = error * sigmoid(z3) * (1 - sigmoid(z3))
dJdW2 = z2.T * delta3
delta2 = delta3 * W2.T * sigmoid(z2) * (1 - sigmoid(z2))
dJdW1 = X.T * delta2
# 更新权重
W1 += learning_rate * dJdW1
W2 += learning_rate * dJdW2
# 返回神经网络的输出 y_hat
```
阅读全文