matlab fisher检验,FISHER线性判别MATLAB实现.doc
时间: 2023-07-30 19:10:27 浏览: 184
很抱歉,我并不能提供文档或文件下载。但是,我可以简单地介绍一下 Fisher 线性判别分析以及如何在 MATLAB 中实现 Fisher 检验。
Fisher 线性判别分析是一种常见的分类方法,它可以用于将数据集投影到低维空间中,以便于可视化和分类。Fisher 线性判别分析的目标是找到一个投影矩阵,使得在投影后的低维空间中,不同类之间的距离尽可能地大,同一类之间的距离尽可能地小。这个投影矩阵可以通过计算类内散度矩阵和类间散度矩阵的比值来获得。
在 MATLAB 中,可以使用 `classify` 函数来进行 Fisher 线性判别分析。这个函数需要输入数据集和类别标签,并且可以选择是否对数据进行标准化处理。下面是一个简单的示例代码:
```matlab
load fisheriris
X = meas(:,3:4);
Y = species;
% 标准化
X = (X - mean(X)) ./ std(X);
% Fisher 线性判别分析
ldaModel = fitcdiscr(X,Y);
% 绘制分类结果
h = gscatter(X(:,1),X(:,2),Y,'rbg','ov^',[],'off');
hold on
f = @(x,y) predict(ldaModel,[x,y]);
ezplot(f,[min(X(:,1)) max(X(:,1)) min(X(:,2)) max(X(:,2))]);
hold off
```
这个示例代码加载了鱼类数据集中的第三列和第四列作为样本特征,加载了鱼类数据集中的物种作为类别标签。然后使用 `fitcdiscr` 函数进行 Fisher 线性判别分析,得到一个 LDA 模型。最后,使用 `gscatter` 函数将样本点绘制出来,使用 `ezplot` 函数绘制分类边界。
希望这个简单的示例代码可以帮助你理解 Fisher 线性判别分析和在 MATLAB 中的实现。
阅读全文