matlab 写能运行的代码 遗传算法做一个逃出盒子的路径,要有一个20*10的网格,带图像显示,有起点终点。

时间: 2024-03-04 21:51:17 浏览: 69
好的,以下是一个简单的 MATLAB 代码示例,使用遗传算法来生成逃出盒子的路径。代码中使用了 MATLAB 自带的 `imagesc` 函数来显示地图。 ```matlab clc; clear; % 网格大小 width = 20; height = 10; % 地图数据,0 表示空地,1 表示障碍物 map = zeros(height, width); map(3:7, 8:12) = 1; map(13:14, 2:17) = 1; % 起点和终点位置 start_pos = [1, 1]; end_pos = [height, width]; % 遗传算法参数 pop_size = 50; % 种群大小 max_gen = 100; % 最大迭代次数 elite_rate = 0.1; % 精英保留率 mutate_rate = 0.1; % 变异率 % 生成初始种群 pop = randi([1, 4], pop_size, height * width); % 遗传算法迭代 for gen = 1:max_gen % 计算适应度 fit = zeros(pop_size, 1); for i = 1:pop_size fit(i) = fitness(pop(i, :), start_pos, end_pos, map, width); end % 选择精英 [~, elite_idx] = sort(fit, 'descend'); elite_num = round(pop_size * elite_rate); elite = pop(elite_idx(1:elite_num), :); % 轮盘赌选择 roulette = cumsum(fit ./ sum(fit)); roulette(end) = 1; new_pop = zeros(pop_size, height * width); for i = 1:pop_size idx1 = find(roulette > rand(), 1); idx2 = find(roulette > rand(), 1); new_pop(i, :) = crossover(pop(idx1, :), pop(idx2, :)); end % 变异 for i = 1:pop_size if rand() < mutate_rate new_pop(i, :) = mutate(new_pop(i, :)); end end % 合并种群 pop = [elite; new_pop(elite_num+1:end, :)]; end % 找到最优解 best_fit = -Inf; best_path = []; for i = 1:pop_size path = decode(pop(i, :), start_pos, end_pos, map, width); fit = fitness(pop(i, :), start_pos, end_pos, map, width); if fit > best_fit best_fit = fit; best_path = path; end end % 显示地图和路径 imagesc(map); colormap(gray); hold on; plot(best_path(:, 2), best_path(:, 1), 'r', 'LineWidth', 2); plot(start_pos(2), start_pos(1), 'go', 'MarkerSize', 10, 'LineWidth', 2); plot(end_pos(2), end_pos(1), 'gx', 'MarkerSize', 10, 'LineWidth', 2); axis equal; axis off; % 适应度函数 function f = fitness(chromosome, start_pos, end_pos, map, width) path = decode(chromosome, start_pos, end_pos, map, width); if isempty(path) f = -Inf; else f = 1 / size(path, 1); end end % 解码函数 function path = decode(chromosome, start_pos, end_pos, map, width) path = zeros(0, 2); pos = start_pos; for i = 1:length(chromosome) dir = mod(chromosome(i) - 1, 4) + 1; switch dir case 1 % 上 new_pos = pos + [-1, 0]; case 2 % 右 new_pos = pos + [0, 1]; case 3 % 下 new_pos = pos + [1, 0]; case 4 % 左 new_pos = pos + [0, -1]; end if all(new_pos >= 1) && all(new_pos <= [size(map, 1), width]) && ~map(new_pos(1), new_pos(2)) path = [path; new_pos]; pos = new_pos; if all(pos == end_pos) break; end end end if any(path(end, :) ~= end_pos) path = []; end end % 交叉函数 function child = crossover(parent1, parent2) point = randi(length(parent1)); child = [parent1(1:point), parent2(point+1:end)]; end % 变异函数 function child = mutate(parent) point = randi(length(parent)); child = parent; child(point) = randi([1, 4]); end ``` 在代码中,我们使用一个二进制字符串来表示路径,每个字符表示走的方向(1 表示上,2 表示右,3 表示下,4 表示左)。初始种群随机生成,经过迭代进化,最终找到适应度最高的路径。解码函数将二进制字符串转换为坐标序列,适应度函数计算路径长度的倒数作为适应度。交叉函数和变异函数用于遗传算法的进化操作。在代码最后,我们使用 `imagesc` 函数显示地图和路径。
阅读全文

相关推荐

最新推荐

recommend-type

matlab 计算灰度图像的一阶矩,二阶矩,三阶矩实例

除了这些矩之外,图像的重心是另一个基于一阶矩的概念。图像的重心可以通过将每个像素的坐标与灰度值相乘,然后对所有像素求和,最后除以总像素面积来计算。在MATLAB中,可以按照以下步骤找到图像的重心: 1. 定义横...
recommend-type

MATLAB 智能算法30个案例分析与详解

总的来说,本书对于熟悉MATLAB的用户,无论是初学者还是有一定经验的开发者,都是一个宝贵的资源,可以帮助他们更好地理解智能算法,特别是遗传算法,并将其应用于实际的工程和科学研究中。通过书中的实例,读者不仅...
recommend-type

基于遗传算法的MATLAB16阵元天线的优化.doc

《基于遗传算法的MATLAB16阵元天线优化设计》 在现代通信技术中,阵列天线因其优良的性能被广泛应用。本设计旨在利用MATLAB编程实现一种基于遗传算法的16元阵列天线优化,以达到特定的性能指标:副瓣电平低于-30dB...
recommend-type

双层规划模型的遗传算法求解的Matlab源码-双层规划模型的遗传算法求解的Matlab源码.doc

双层规划模型的遗传算法求解的Matlab...这个Matlab源码提供了一个完整的双层规划模型的遗传算法求解的实现,可以作为解决双层规划问题的参考,同时也提供了一个算法仿真团队的链接,方便用户获取更多的算法仿真资源。
recommend-type

matlab画三维图像的示例代码(附demo)

`mesh(x,y,z)`用于生成一个网格化的三维图像,其中`x`、`y`和`z`是对应坐标轴的矩阵,它们通常是通过`meshgrid`函数生成的。例如,我们可以绘制函数`z = cos(x) * sin(y)`的图像,其中`x`和`y`的范围是`[-2π, 2π]`...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。