用Keras写一个non local block,用def方法写,不要class
时间: 2023-06-16 09:03:36 浏览: 82
好的,下面是一个用 Keras 实现的非局部块(Non-local Block)的例子,使用 def 方法写:
```python
from keras import backend as K
from keras.layers import Conv2D, Activation, Lambda, add, multiply
def non_local_block(ip, computation='dot', compression=2, mode='embedded'):
'''
Non-local block implementation in Keras.
Args:
- ip: Input tensor to the non-local block.
- computation: Type of computation to be used for similarity calculation.
Valid options: 'dot' or 'embedded'.
Default: 'dot'.
- compression: Factor by which to reduce the number of channels before computing
similarities.
Default: 2.
- mode: Whether to use embedded Gaussian function ('embedded') or standard Gaussian
function ('gaussian') for computing weights.
Default: 'embedded'.
Returns:
- Output tensor of the non-local block.
'''
# Compute the input shape of the tensor
input_shape = K.int_shape(ip)
# Compute the dimensions of the space in which the non-local operation is performed
spatial_dims = len(input_shape) - 2
# Compute the number of channels after compression
reduced_channels = max(input_shape[spatial_dims + 1] // compression, 1)
# Define the theta path
theta = Conv2D(reduced_channels, kernel_size=1, strides=1, padding='same')(ip)
# Define the phi path
phi = Conv2D(reduced_channels, kernel_size=1, strides=1, padding='same')(ip)
# Define the g path
g = Conv2D(reduced_channels, kernel_size=1, strides=1, padding='same')(ip)
if computation == 'dot':
# Perform dot product between theta and phi
theta_phi = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[3, 3]))([theta, phi])
elif computation == 'embedded':
# Compute the similarity between theta and phi using embedded Gaussian function
theta_phi = Conv2D(reduced_channels, kernel_size=1, strides=1, padding='same')(theta)
theta_phi = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[3, 3]))([theta_phi, phi])
theta_phi = Activation('softmax')(theta_phi)
else:
raise ValueError("Invalid value for 'computation' argument. Valid options are 'dot' or 'embedded'.")
# Define the output path
if mode == 'embedded':
# Compute the weight using embedded Gaussian function
theta_phi_g = Conv2D(input_shape[spatial_dims + 1], kernel_size=1, strides=1, padding='same')(g)
theta_phi_g = Lambda(lambda x: K.batch_dot(x[0], x[1], axes=[3, 2]))([theta_phi, theta_phi_g])
theta_phi_g = Activation('softmax')(theta_phi_g)
elif mode == 'gaussian':
# Compute the weight using standard Gaussian function
theta_phi_g = Lambda(lambda x: K.softmax(x / K.sqrt(K.cast(reduced_channels, dtype=K.floatx()))))(theta_phi)
else:
raise ValueError("Invalid value for 'mode' argument. Valid options are 'embedded' or 'gaussian'.")
# Apply the weight to the output of g path
g_theta_phi = Conv2D(input_shape[spatial_dims + 1], kernel_size=1, strides=1, padding='same')(g)
g_theta_phi = multiply([g_theta_phi, theta_phi_g])
# Add the output of g path to the input tensor to complete the non-local block
y = add([ip, g_theta_phi])
return y
```
这里实现了一个非局部块,包括了 dot-based 和 embedded Gaussian-based 两种计算相似度的方式,以及使用 embedded Gaussian function 或 standard Gaussian function 计算权重的两种方式。可以根据需要进行修改。
阅读全文