def k_medoids(X, n_clusters, max_iter=100): # 初始化类簇中心点 medoids = random.sample(range(len(X)), n_clusters) labels = None for _ in range(max_iter): # 计算所有样本与中心点的距离 distances = pairwise_distances(X, X[medoids]) # 分配样本到最近的中心点 new_labels = np.argmin(distances, axis=1) # 更新中心点 for i in range(n_clusters): cluster_samples = np.where(new_labels == i)[0] new_medoid = np.argmin(np.sum(distances[cluster_samples][:, cluster_samples], axis=1)) medoids[i] = cluster_samples[new_medoid] # 判断是否收敛 if np.array_equal(labels, new_labels): break labels = new_labels return medoids, labels
时间: 2024-04-08 12:31:54 浏览: 135
k-medoids.rar_k-medoids_k-medoids算法_k-medoids聚类_分类算法_聚类分类
这是一个 K-medoids 算法的实现。K-medoids 是一种聚类算法,它与 K-means 算法相似,但是它使用实际数据点作为聚类中心,而不是计算出的平均值。在这个实现中,输入参数 X 是一个包含样本数据的矩阵,n_clusters 是要生成的聚类数量,max_iter 是最大迭代次数。
算法的主要步骤如下:
1. 随机选择 n_clusters 个样本作为初始的中心点 medoids。
2. 计算所有样本与中心点之间的距离。
3. 将每个样本分配到距离最近的中心点。
4. 更新每个聚类的中心点,选择距离该聚类内样本距离之和最小的样本作为新的中心点。
5. 判断是否收敛,如果新的标签与上一次迭代的标签相同,则认为算法已经收敛,结束迭代。
6. 返回最终的中心点 medoids 和样本的标签 labels。
这个算法可以用于将样本数据划分成指定数量的不同聚类。它通过最小化样本与中心点之间的距离来确定聚类结果。
阅读全文