apriori算法python实现
时间: 2023-11-21 21:04:15 浏览: 77
Sure, apriori algorithm is a popular algorithm used in data mining and association rule learning. Here is an implementation of Apriori algorithm in Python:
https://stackoverflow.com/questions/45485419/apriori-python-implementation/45487128
I hope this helps to answer your question.
相关问题
APriori算法python 实现
APriori算法是一种经典的关联规则挖掘算法,用于从大量交易数据中发现频繁项集并生成关联规则。在Python中,我们可以使用mlxtend库中的apriori函数来实现这个算法。以下是简单的步骤:
首先,你需要安装mlxtend库,如果还没有安装,可以使用pip安装:
```bash
pip install mlxtend
```
然后,你可以通过以下代码片段实现APriori算法:
```python
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
# 假设你的交易数据是一个二维列表,每个元素代表一次交易,包含商品ID
transactions = [
['Milk', 'Eggs'],
['Bread', 'Butter', 'Milk'],
['Bread', 'Butter'],
['Coffee']
]
# 将交易数据转换为编码形式
te = TransactionEncoder()
X = te.fit(transactions).transform(transactions)
# 设置最小支持度(如0.5)和最大项数(如3)
min_support = 0.5
max_length = 3
# 运行APriori算法
frequent_itemsets = apriori(X, min_support=min_support, use_colnames=True)
# 生成关联规则
rules = association_rules(frequent_itemsets, metric="lift", min_threshold=1.0)
print("Frequent itemsets:")
print(frequent_itemsets)
print("\nAssociation rules:")
print(rules)
```
在这个例子中,`min_support`指定了支持度阈值,`max_length`限制了项集的最大长度。运行完成后,你会得到频繁项集和相应的关联规则。
apriori算法Python实现
以下是 Apriori 算法的 Python 实现示例:
```python
def loadDataSet():
# 载入数据集
return [[1,3,4], [2,3,5], [1,2,3,5], [2,5]]
def createC1(dataSet):
# 创建候选项集C1
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
return list(map(frozenset, C1))
def scanD(D, Ck, minSupport):
# 计算支持度
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt:
ssCnt[can] = 1
else:
ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.append(key)
supportData[key] = support
return retList, supportData
def aprioriGen(Lk, k):
# 创建候选项集Ck
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i+1, lenLk):
L1 = list(Lk[i])[:k-2]
L2 = list(Lk[j])[:k-2]
L1.sort()
L2.sort()
if L1 == L2:
retList.append(Lk[i] | Lk[j])
return retList
def apriori(dataSet, minSupport=0.5):
# Apriori算法
C1 = createC1(dataSet)
D = list(map(set, dataSet))
L1, supportData = scanD(D, C1, minSupport)
L = [L1]
k = 2
while len(L[k-2]) > 0:
Ck = aprioriGen(L[k-2], k)
Lk, supK = scanD(D, Ck, minSupport)
supportData.update(supK)
L.append(Lk)
k += 1
return L, supportData
```
以上代码实现了 Apriori 算法的核心功能,可以通过调用 apriori 函数传入数据集和最小支持度参数来得到频繁项集和支持度信息。
阅读全文