用pytorch搭建UNet3Plus网络

时间: 2023-05-26 22:04:43 浏览: 246
下面是用PyTorch搭建UNet3Plus网络的代码示例: ```python import torch import torch.nn as nn class ConvBlock(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1) self.bn1 = nn.BatchNorm2d(out_channels) self.relu = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1) self.bn2 = nn.BatchNorm2d(out_channels) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.conv2(x) x = self.bn2(x) x = self.relu(x) return x class UNet3Plus(nn.Module): def __init__(self, in_channels, out_channels, num_classes): super().__init__() self.conv_block1 = ConvBlock(in_channels, 64) self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_block2 = ConvBlock(64, 128) self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_block3 = ConvBlock(128, 256) self.pool3 = nn.MaxPool2d(kernel_size=2, stride=2) self.conv_block4 = ConvBlock(256, 512) self.pool4 = nn.MaxPool2d(kernel_size=2, stride=2) self.center = ConvBlock(512, 1024) self.upsample4_1 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) self.conv_block4_1 = ConvBlock(1024, 512) self.upsample3_1 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) self.conv_block3_1 = ConvBlock(512, 256) self.upsample2_1 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) self.conv_block2_1 = ConvBlock(256, 128) self.upsample1_1 = nn.ConvTranspose2d(128, 64, kernel_size=2, stride=2) self.conv_block1_1 = ConvBlock(128, 64) self.seg_out_1 = nn.Conv2d(64, num_classes, kernel_size=1) self.upsample4_2 = nn.ConvTranspose2d(1024, 512, kernel_size=2, stride=2) self.conv_block4_2 = ConvBlock(1024, 512) self.upsample3_2 = nn.ConvTranspose2d(512, 256, kernel_size=2, stride=2) self.conv_block3_2 = ConvBlock(512, 256) self.upsample2_2 = nn.ConvTranspose2d(256, 128, kernel_size=2, stride=2) self.conv_block2_2 = ConvBlock(256, 128) self.seg_out_2 = nn.Conv2d(128, num_classes, kernel_size=1) def forward(self, x): conv1 = self.conv_block1(x) pool1 = self.pool1(conv1) conv2 = self.conv_block2(pool1) pool2 = self.pool2(conv2) conv3 = self.conv_block3(pool2) pool3 = self.pool3(conv3) conv4 = self.conv_block4(pool3) pool4 = self.pool4(conv4) center = self.center(pool4) up4_1 = self.upsample4_1(center) concat4_1 = torch.cat([up4_1, conv4], dim=1) conv4_1 = self.conv_block4_1(concat4_1) up3_1 = self.upsample3_1(conv4_1) concat3_1 = torch.cat([up3_1, conv3], dim=1) conv3_1 = self.conv_block3_1(concat3_1) up2_1 = self.upsample2_1(conv3_1) concat2_1 = torch.cat([up2_1, conv2], dim=1) conv2_1 = self.conv_block2_1(concat2_1) up1_1 = self.upsample1_1(conv2_1) concat1_1 = torch.cat([up1_1, conv1], dim=1) conv1_1 = self.conv_block1_1(concat1_1) seg_out_1 = self.seg_out_1(conv1_1) up4_2 = self.upsample4_2(center) concat4_2 = torch.cat([up4_2, conv4_1], dim=1) conv4_2 = self.conv_block4_2(concat4_2) up3_2 = self.upsample3_2(conv4_2) concat3_2 = torch.cat([up3_2, conv3_1], dim=1) conv3_2 = self.conv_block3_2(concat3_2) up2_2 = self.upsample2_2(conv3_2) concat2_2 = torch.cat([up2_2, conv2_1], dim=1) conv2_2 = self.conv_block2_2(concat2_2) seg_out_2 = self.seg_out_2(conv2_2) return seg_out_1, seg_out_2 ``` UNet3Plus是一种基于UNet和FPN的语义分割网络,采用了多个分辨率的特征融合策略,能够较好地在医疗图像分割、自然图像分割等任务中发挥作用。这里定义了一个ConvBlock模块,用于构建卷积操作,并依次实现了各个模块的前向传递过程。在网络的前向传递中,先对输入进行卷积处理与池化操作,再进行多层级别的特征融合操作,最终输出分割结果。
阅读全文

相关推荐

最新推荐

recommend-type

使用pytorch实现论文中的unet网络

在PyTorch中实现Unet网络是深度学习领域中用于图像分割任务的常见做法。Unet网络由Ronneberger等人提出,它以其独特的编解码结构而闻名,能够有效地捕捉图像的上下文信息并保留边缘细节。以下是关于如何在PyTorch中...
recommend-type

基于pytorch的UNet_demo实现及训练自己的数据集.docx

本文将介绍如何在PyTorch环境中实现UNet网络,并训练自定义的数据集。 1. **UNet-PyTorch Demo** - **源码仓库**: 可以从[官方GitHub仓库](https://github.com/leijue222/portrait-matting-unet-flask)克隆一个...
recommend-type

PyTorch上搭建简单神经网络实现回归和分类的示例

在PyTorch中构建神经网络可以分为几个关键步骤,这里我们将探讨如何使用PyTorch搭建简单的神经网络以实现回归和分类任务。 首先,我们需要了解PyTorch的基本组件。其中,`torch.Tensor`是核心数据结构,它类似于...
recommend-type

关于pytorch中全连接神经网络搭建两种模式详解

本文将深入探讨两种常见的神经网络搭建模式。 **第一种模式:使用`nn.Sequential`构建网络** 在PyTorch中,`nn.Sequential`容器可以方便地构造一个顺序执行的模型。以下是一个示例: ```python class NN(nn....
recommend-type

使用pytorch搭建AlexNet操作(微调预训练模型及手动搭建)

在PyTorch中,搭建AlexNet网络模型是一个常见的任务,特别是在迁移学习的场景下。AlexNet是一个深度卷积神经网络,最初在2012年的ImageNet大赛中取得了突破性的成绩,开启了深度学习在计算机视觉领域的广泛应用。在...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。