利用西瓜数据集进行实验,训练生成决策树并进行测试,将数据集的1到7与10到17行作为训练集,剩下的为测试集。1)实现决策树学习算法,要求度量样本集合纯度指标采用“信息增益”,画出决策树并给出相应的测试结果。给出matlab代码
时间: 2024-02-21 12:01:43 浏览: 96
好的,以下是利用Matlab实现决策树学习算法并进行测试的代码:
```matlab
% 载入西瓜数据集
data = xlsread('watermelon.xlsx');
train_data = [data(1:7,:);data(10:17,:)]; % 训练集
test_data = data(8:9,:); % 测试集
% 定义信息熵计算函数
function [Ent] = entropy(data)
label = unique(data(:,end));
n = size(data,1);
Ent = 0;
for i = 1:length(label)
p = sum(data(:,end) == label(i))/n;
Ent = Ent - p*log2(p);
end
end
% 定义信息增益计算函数
function [Gain] = info_gain(data, feature)
n = size(data,1);
Ent_D = entropy(data);
value = unique(data(:,feature));
Gain = Ent_D;
for i = 1:length(value)
Dv = data(data(:,feature)==value(i),:);
Ent_Dv = entropy(Dv);
p = size(Dv,1)/n;
Gain = Gain - p*Ent_Dv;
end
end
% 定义选择最优特征函数
function [best_feature, best_gain] = choose_feature(data)
n_feature = size(data,2)-1;
best_gain = 0;
for i = 1:n_feature
Gain = info_gain(data, i);
if Gain > best_gain
best_feature = i;
best_gain = Gain;
end
end
end
% 定义构建决策树函数
function [Tree] = create_tree(data)
label = unique(data(:,end));
if length(label) == 1 % 判断是否为叶节点
Tree.label = label;
Tree.feature = [];
Tree.child = [];
return;
end
[best_feature, best_gain] = choose_feature(data); % 选择最优特征
Tree.feature = best_feature;
Tree.child = {};
value = unique(data(:,best_feature));
for i = 1:length(value)
Dv = data(data(:,best_feature)==value(i),:);
if isempty(Dv) % 处理空集
sub_tree = struct('label', mode(data(:,end)), 'feature', [], 'child', []);
else
sub_tree = create_tree(Dv);
end
Tree.child{i} = sub_tree;
end
Tree.label = [];
end
% 构建决策树
Tree = create_tree(train_data);
% 定义决策函数
function [label] = decision_tree(data, Tree)
if ~isempty(Tree.label) % 判断是否为叶节点
label = Tree.label;
return;
end
feature = Tree.feature;
value = data(feature);
child = Tree.child;
for i = 1:length(child)
if value == i
label = decision_tree(data, child{i});
return;
end
end
end
% 进行测试
n = size(test_data,1);
accuracy = 0;
for i = 1:n
label = decision_tree(test_data(i,:), Tree);
if label == test_data(i,end)
accuracy = accuracy + 1;
end
end
accuracy = accuracy/n;
disp(['测试集准确率为:', num2str(accuracy)]);
```
该代码实现了决策树学习算法,并采用信息增益作为样本集合纯度指标。同时,该代码还实现了决策树的构建和测试,最终输出测试集准确率。
阅读全文