人工蜂群算法matlab代码
时间: 2023-08-04 20:06:29 浏览: 148
一种改进的基于贝叶斯的人工蜂群算法附matlab代码.zip
以下是一个简单的人工蜂群算法的 MATLAB 代码示例:
```matlab
% 初始化参数
n = 100; % 蜜蜂数量
limit = 100; % 迭代次数
D = 10; % 解的维度
lb = -5; % 解的下界
ub = 5; % 解的上界
% 初始化蜜蜂位置和目标函数值
x = lb + (ub - lb) * rand(n, D); % 随机初始化蜜蜂位置
fitness = evaluate(x); % 计算目标函数值
% 迭代搜索
for iter = 1:limit
% 雇佣蜜蜂阶段
for i = 1:n
% 在邻域内随机选择一个不同的蜜蜂
k = randi([1, n-1]);
if k >= i
k = k + 1;
end
% 生成新解
phi = -1 + 2 * rand();
v = x(i, :) + phi * (x(i, :) - x(k, :));
% 边界处理
v(v < lb) = lb;
v(v > ub) = ub;
% 评估新解的目标函数值
fitness_v = evaluate(v);
% 更新位置和目标函数值
if fitness_v < fitness(i)
x(i, :) = v;
fitness(i) = fitness_v;
end
end
% 观察蜜蜂阶段
for i = 1:n
% 生成新解
v = lb + (ub - lb) * rand(1, D);
% 评估新解的目标函数值
fitness_v = evaluate(v);
% 更新位置和目标函数值
if fitness_v < fitness(i)
x(i, :) = v;
fitness(i) = fitness_v;
end
end
% 侦查蜜蜂阶段
[~, best_idx] = min(fitness);
% 生成新解
v = lb + (ub - lb) * rand(1, D);
% 评估新解的目标函数值
fitness_v = evaluate(v);
% 更新最佳位置和目标函数值
if fitness_v < fitness(best_idx)
x(best_idx, :) = v;
fitness(best_idx) = fitness_v;
end
% 显示当前最优解
disp(['Iteration ', num2str(iter), ': Best Fitness = ', num2str(min(fitness))]);
end
% 输出最优解和最优目标函数值
[best_fitness, best_idx] = min(fitness);
best_solution = x(best_idx, :);
disp('---------------------------');
disp('Optimization Results:');
disp(['Best Fitness = ', num2str(best_fitness)]);
disp(['Best Solution = ', num2str(best_solution)]);
% 目标函数(示例,需替换为具体的目标函数)
function f = evaluate(x)
f = sum(x.^2, 2);
end
```
请注意,以上代码中的目标函数 `evaluate` 只是一个示例,您需要根据实际问题替换为您想要优化的具体目标函数。此外,人工蜂群算法还有很多改进和变体,您可以根据需要进行调整和扩展。
阅读全文