SKlearn实现鸢尾花数据集分类 , 导入数据集 , 切分训练集和测试集 , 构建朴素贝叶斯分类器(注意根据数据特征选择合适的贝叶斯分类器) ,测试模型预测效果
时间: 2024-10-11 19:15:05 浏览: 175
在Python的Scikit-learn库中,实现鸢尾花数据集的分类通常分为以下几个步骤:
1. **导入必要的库**:
```python
import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score
```
2. **加载鸢尾花数据集**:
```python
iris = datasets.load_iris()
```
3. **预处理数据**:
- 获取特征(X)和目标变量(y):
```python
X = iris.data
y = iris.target
```
- 将数据集切分为训练集和测试集:
```python
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
```
4. **构建朴素贝叶斯分类器**:
根据鸢尾花数据集的特点,它包含连续数值特征,适合使用`GaussianNB`(高斯朴素贝叶斯分类器),因为这个分类器假设特征服从正态分布:
```python
classifier = GaussianNB()
```
5. **拟合模型到训练数据**:
```python
classifier.fit(X_train, y_train)
```
6. **进行预测**:
```python
y_pred = classifier.predict(X_test)
```
7. **评估模型预测效果**:
使用accuracy_score计算预测准确率:
```python
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)