unity A星寻路
时间: 2024-09-05 08:03:12 浏览: 74
A*算法(A* Search Algorithm)是一种启发式搜索算法,常用于实时游戏引擎如Unity中的路径规划,特别是在复杂的环境中寻找从起点到终点的最短或最优路径。它结合了Dijkstra算法(求最短路径)和贪心策略(通过估价函数优先选择看起来更近的目标),其中的关键数据结构包括 开始点、终点、开放列表(存储待访问节点,按照f值排序,f值= g+heuristic) 和 关闭列表(已访问过的节点)。g值代表当前节点到开始点的实际代价,h值是对启发式估计的直接距离,两者之和作为节点的评估f值。
在Unity中,开发者通常会创建一个AStar类,设置地图网格、邻居规则、启发式函数等,并实现findPath()函数来计算路径。用户界面可以展示路径,例如通过动画路径生成器将每个路径节点连接起来形成线段。
相关问题
写一个Unity A星寻路算法
A*寻路算法是一种常用的路径规划算法,它在地图上寻找两个点之间的最短路径。在Unity中,我们可以使用以下步骤实现A*寻路算法:
1. 创建地图:我们需要创建一个网格地图,其中每个格子都代表着地图上的一个点。每个点都有一个坐标、可通过性和一些其他属性。
2. 创建节点类:我们需要创建一个节点类,用于保存每个点的信息。每个节点都有一个父节点、位置、代价和其他属性。
3. 创建Open和Close列表:我们需要创建两个列表,一个是Open列表,用于存储待搜索的节点,另一个是Close列表,用于存储已搜索过的节点。
4. 初始化起点和终点:我们需要初始化起点和终点,并将起点加入到Open列表中。
5. 搜索路径:我们需要重复以下步骤直到找到终点或者Open列表为空:
a. 从Open列表中选取代价最小的节点作为当前节点。
b. 将当前节点从Open列表中删除,并将其加入到Close列表中。
c. 检查当前节点是否为终点,如果是则返回路径。
d. 遍历当前节点的相邻节点,计算它们的代价,并将它们加入到Open列表中。
6. 返回路径:如果找到了终点,则从终点开始沿着父节点一直往回走,直到回到起点。这样就得到了一条最短路径。
以下是示例代码:
```csharp
using System.Collections;
using System.Collections.Generic;
using UnityEngine;
public class AStar : MonoBehaviour {
public LayerMask wallMask;
public Vector2 gridSize;
public float nodeRadius;
Node[,] grid;
float nodeDiameter;
int gridSizeX, gridSizeY;
void Start() {
nodeDiameter = nodeRadius * 2;
gridSizeX = Mathf.RoundToInt(gridSize.x / nodeDiameter);
gridSizeY = Mathf.RoundToInt(gridSize.y / nodeDiameter);
CreateGrid();
}
void CreateGrid() {
grid = new Node[gridSizeX, gridSizeY];
Vector3 worldBottomLeft = transform.position - Vector3.right * gridSize.x / 2 - Vector3.forward * gridSize.y / 2;
for (int x = 0; x < gridSizeX; x++) {
for (int y = 0; y < gridSizeY; y++) {
Vector3 worldPoint = worldBottomLeft + Vector3.right * (x * nodeDiameter + nodeRadius) + Vector3.forward * (y * nodeDiameter + nodeRadius);
bool walkable = !Physics.CheckSphere(worldPoint, nodeRadius, wallMask);
grid[x, y] = new Node(walkable, worldPoint, x, y);
}
}
}
public List<Node> GetNeighbours(Node node) {
List<Node> neighbours = new List<Node>();
for (int x = -1; x <= 1; x++) {
for (int y = -1; y <= 1; y++) {
if (x == 0 && y == 0) continue;
int checkX = node.gridX + x;
int checkY = node.gridY + y;
if (checkX >= 0 && checkX < gridSizeX && checkY >= 0 && checkY < gridSizeY) {
neighbours.Add(grid[checkX, checkY]);
}
}
}
return neighbours;
}
public Node NodeFromWorldPoint(Vector3 worldPosition) {
float percentX = (worldPosition.x + gridSize.x / 2) / gridSize.x;
float percentY = (worldPosition.z + gridSize.y / 2) / gridSize.y;
percentX = Mathf.Clamp01(percentX);
percentY = Mathf.Clamp01(percentY);
int x = Mathf.RoundToInt((gridSizeX - 1) * percentX);
int y = Mathf.RoundToInt((gridSizeY - 1) * percentY);
return grid[x, y];
}
public List<Node> FindPath(Vector3 startPos, Vector3 targetPos) {
Node startNode = NodeFromWorldPoint(startPos);
Node targetNode = NodeFromWorldPoint(targetPos);
List<Node> openSet = new List<Node>();
HashSet<Node> closedSet = new HashSet<Node>();
openSet.Add(startNode);
while (openSet.Count > 0) {
Node currentNode = openSet[0];
for (int i = 1; i < openSet.Count; i++) {
if (openSet[i].fCost < currentNode.fCost || (openSet[i].fCost == currentNode.fCost && openSet[i].hCost < currentNode.hCost)) {
currentNode = openSet[i];
}
}
openSet.Remove(currentNode);
closedSet.Add(currentNode);
if (currentNode == targetNode) {
return RetracePath(startNode, targetNode);
}
foreach (Node neighbour in GetNeighbours(currentNode)) {
if (!neighbour.walkable || closedSet.Contains(neighbour)) {
continue;
}
int newCostToNeighbour = currentNode.gCost + GetDistance(currentNode, neighbour);
if (newCostToNeighbour < neighbour.gCost || !openSet.Contains(neighbour)) {
neighbour.gCost = newCostToNeighbour;
neighbour.hCost = GetDistance(neighbour, targetNode);
neighbour.parent = currentNode;
if (!openSet.Contains(neighbour)) {
openSet.Add(neighbour);
}
}
}
}
return null;
}
List<Node> RetracePath(Node startNode, Node endNode) {
List<Node> path = new List<Node>();
Node currentNode = endNode;
while (currentNode != startNode) {
path.Add(currentNode);
currentNode = currentNode.parent;
}
path.Reverse();
return path;
}
int GetDistance(Node nodeA, Node nodeB) {
int distX = Mathf.Abs(nodeA.gridX - nodeB.gridX);
int distY = Mathf.Abs(nodeA.gridY - nodeB.gridY);
if (distX > distY) {
return 14 * distY + 10 * (distX - distY);
}
return 14 * distX + 10 * (distY - distX);
}
public class Node {
public bool walkable;
public Vector3 worldPosition;
public int gridX;
public int gridY;
public int gCost;
public int hCost;
public Node parent;
public Node(bool _walkable, Vector3 _worldPos, int _gridX, int _gridY) {
walkable = _walkable;
worldPosition = _worldPos;
gridX = _gridX;
gridY = _gridY;
}
public int fCost {
get {
return gCost + hCost;
}
}
}
}
```
在上面的代码中,我们首先创建了一个网格地图,并在其中创建了节点类。然后,我们实现了A*算法的核心部分,并将其用于在网格地图上搜索路径。在搜索结束后,我们返回了一条最短路径。
用unity实现a星寻路
很高兴为您解答。A星寻路算法是一种常用的寻路算法,在Unity中实现A星寻路可以让游戏中的角色等能够智能地寻找最优路径。在制作游戏中,我们可以使用Unity自带的Nav Mesh Agent组件,也可以通过编写代码实现。如果您想要详细了解实现A星寻路的方法,可以在CSDN平台上搜索相关的教程进行学习。
阅读全文
相关推荐
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![pdf](https://img-home.csdnimg.cn/images/20241231044930.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231044955.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)