python实现基于transformer智能聊天机器人
时间: 2023-09-14 19:02:41 浏览: 199
基于Transformer模型构建的聊天机器人python源码+运行说明.zip
5星 · 资源好评率100%
对于基于Transformer的智能聊天机器人的实现,你可以使用Python中的深度学习框架例如PyTorch或TensorFlow来实现。以下是一个简单的代码示例:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torchtext.data import Field, TabularDataset, BucketIterator
# 定义输入和输出字段
input_field = Field(tokenize='spacy', lower=True, init_token='<sos>', eos_token='<eos>')
output_field = Field(tokenize='spacy', lower=True, init_token='<sos>', eos_token='<eos>')
# 加载数据集
datafields = [('input', input_field), ('output', output_field)]
train_data, valid_data, test_data = TabularDataset.splits(
path='data/', train='train.csv', validation='valid.csv', test='test.csv', format='csv', fields=datafields
)
# 构建词汇表
input_field.build_vocab(train_data, min_freq=2)
output_field.build_vocab(train_data, min_freq=2)
# 定义模型
class TransformerModel(nn.Module):
def __init__(self, input_dim, output_dim, n_heads, n_layers, hidden_dim, dropout):
super().__init__()
self.input_embedding = nn.Embedding(input_dim, hidden_dim)
self.positional_encoding = nn.Embedding(1000, hidden_dim)
self.transformer = nn.Transformer(
d_model=hidden_dim,
nhead=n_heads,
num_encoder_layers=n_layers,
num_decoder_layers=n_layers,
dim_feedforward=hidden_dim * 4,
dropout=dropout
)
self.output_embedding = nn.Embedding(output_dim, hidden_dim)
self.fc = nn.Linear(hidden_dim, output_dim)
def forward(self, src, trg):
src_embedded = self.input_embedding(src) + self.positional_encoding(src)
trg_embedded = self.output_embedding(trg) + self.positional_encoding(trg)
src_pad_mask = self.transformer.generate_square_subsequent_mask(src.size(0)).to(src.device)
trg_pad_mask = self.transformer.generate_square_subsequent_mask(trg.size(0)).to(trg.device)
output = self.transformer(src_embedded, trg_embedded, src_key_padding_mask=src_pad_mask, tgt_key_padding_mask=trg_pad_mask)
output = self.fc(output)
return output
# 初始化模型和优化器
input_dim = len(input_field.vocab)
output_dim = len(output_field.vocab)
model = TransformerModel(input_dim, output_dim, n_heads=8, n_layers=4, hidden_dim=256, dropout=0.2)
optimizer = optim.Adam(model.parameters())
# 定义损失函数和设备
criterion = nn.CrossEntropyLoss(ignore_index=output_field.vocab.stoi['<pad>'])
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 将数据放入设备
train_iterator, valid_iterator, test_iterator = BucketIterator.splits(
(train_data, valid_data, test_data),
batch_size=64,
sort_within_batch=True,
sort_key=lambda x: len(x.input),
device=device
)
# 训练模型
model.to(device)
for epoch in range(num_epochs):
# 训练模型
model.train()
for batch in train_iterator:
src = batch.input.to(device)
trg = batch.output.to(device)
optimizer.zero_grad()
output = model(src, trg[:-1])
output_dim = output.shape[-1]
output = output.reshape(-1, output_dim)
trg = trg[1:].reshape(-1)
loss = criterion(output, trg)
loss.backward()
optimizer.step()
# 评估模型
model.eval()
with torch.no_grad():
total_loss = 0
for batch in valid_iterator:
src = batch.input.to(device)
trg = batch.output.to(device)
output = model(src, trg[:-1])
output_dim = output.shape[-1]
output = output.reshape(-1, output_dim)
trg = trg[1:].reshape(-1)
loss = criterion(output, trg)
total_loss += loss.item()
avg_loss = total_loss / len(valid_iterator)
print(f'Epoch: {epoch+1}, Validation Loss: {avg_loss:.4f}')
# 测试模型
model.eval()
with torch.no_grad():
total_loss = 0
for batch in test_iterator:
src = batch.input.to(device)
trg = batch.output.to(device)
output = model(src, trg[:-1])
output_dim = output.shape[-1]
output = output.reshape(-1, output_dim)
trg = trg[1:].reshape(-1)
loss = criterion(output, trg)
total_loss += loss.item()
avg_loss = total_loss / len(test_iterator)
print(f'Test Loss: {avg_loss:.4f}')
```
这只是一个简单的示例,你可以根据具体的需求进行修改和扩展。注意在训练模型之前,你需要准备好数据集,并将其保存为CSV格式。你还需要根据实际情况调整模型的超参数和网络结构。
阅读全文