给我写一个五子棋AI算法
时间: 2024-12-21 14:29:49 浏览: 3
智能五子棋算法的设计实现论文.pdf
编写一个完整的五子棋AI算法通常涉及到搜索树、启发式评估函数以及一些游戏策略。这里提供一个简化的Minimax算法的基本框架:
```python
class GomokuAI:
def __init__(self, depth=4):
self.depth = depth
def get_move(self, board, player):
possible_moves = [x for x in board.available_moves()]
if len(possible_moves) == 0:
return None # 判断平局或对手获胜
best_score = float('-inf') if player else float('inf')
best_move = None
for move in possible_moves:
# 模拟下棋并应用 minimax 或 alpha-beta pruning
next_board = board.apply_move(move, player)
score = self.minimax(next_board, -float('inf'), float('inf'), player ^ 1)
# 更新最佳移动
if score > best_score:
best_score = score
best_move = move
return best_move
def minimax(self, board, alpha, beta, is_maximizing_player):
if self.is_terminal(board): # 判断是否达到结束状态
return evaluate_board(board)
if is_maximizing_player:
max_score = float('-inf')
for move in board.available_moves():
temp_board = board.apply_move(move, is_maximizing_player)
max_score = max(max_score, self.minimax(temp_board, alpha, beta, False))
alpha = max(alpha, max_score) #剪枝
if beta <= alpha:
break # alpha-beta剪枝条件满足
return max_score
else:
min_score = float('inf')
for move in board.available_moves():
temp_board = board.apply_move(move, is_maximizing_player)
min_score = min(min_score, self.minimax(temp_board, alpha, beta, True))
beta = min(beta, min_score) #剪枝
if beta <= alpha:
break # alpha-beta剪枝条件满足
return min_score
def evaluate_board(board):
# 这里可以添加启发式评价函数,比如计算连子数、攻击点等
pass
# 使用示例
ai = GomokuAI()
best_move = ai.get_move(your_board_instance, current_player)
```
这个算法是一个基本的 Minimax 算法,用于寻找最佳的下一步行动。实际应用中,你可能需要加上更复杂的搜索增强技术,如Alpha-Beta剪枝、蒙特卡洛树搜索(MCTS)等,以及自适应的启发式评估函数,以便提高AI的表现。
阅读全文