解释一下代码new_data = pd.DataFrame(new_col).T new_data.columns=new_col_name new_data_all = new_data.dropna(axis=1)
时间: 2024-04-19 11:26:01 浏览: 136
这段代码是对数据进行处理的过程。首先,使用pd.DataFrame()函数将一个名为new_col的列表转换为DataFrame对象,并通过.T方法进行转置,将列变为行。然后,通过给新的DataFrame对象设置列名new_col_name,将新的列名赋值给new_data的columns属性。接下来,使用dropna()方法对new_data进行处理,将所有带有缺失值的列删除,并将处理后的结果赋值给new_data_all变量。该操作通过指定axis=1参数来删除列中含有缺失值的部分。最终,new_data_all将是一个没有缺失值的数据集。
相关问题
解释这段代码importpandasaspdimportnumpyasnpimportstatsmodels.apiassmimportstatsmodels.formula.apiassmfdata_raod=r'C:\Users\chen\Desktop\原油峰强比选峰.xlsx'df=pd.read_excel(data_raod,sheet_name=1,header=0,index_col=0)#将第一列与第一行作为索引与列名dfRdata_df=pd.DataFrame()columnsdata_df=pd.DataFrame()forjinrange(0,19):columns_names=[]foriinrange(0,19):columns_names.append('{}/{}'.format(df.columns[j],df.columns[i]))#构建计算后的列名,储存在columns_names列表中columns_df=pd.DataFrame(columns_names).Tcolumnsdata_df=pd.concat([columnsdata_df,columns_df],axis=0)#print(columns_names)pd_data=df.apply(lambdax:x.iloc[j]/x,axis=1)#pd_data.drop(axis=1,columns=df.columns[:j+1],inplace=True)#pd_data.columns=columns_names#将计算后的数据赋予新的表名final_df=pd_data.groupby(by=pd_data.index).mean()#做平均取值#简单线性回归模型的求解,求解R方R_squared_list=[]foriinrange(len(final_df.columns)):x=final_df.indexy=final_df.iloc[:,i]regression_data=pd.DataFrame({'Y':y,'X':x})regression=smf.ols(formula='Y~X',data=regression_data)#这里面要输入公式和数据model=regression.fit()#模型拟合R_squared_list.append(model.rsquared)#提取R方,储存到列表中R_df=pd.DataFrame(R_squared_list).T#R_df.columns=final_df.columns#列名与R方R_df#输出R方系数值print('成功输出第'+str(j)+'列两两比值后的R方!')Rdata_df=pd.concat([Rdata_df,R_df],axis=0)Rdata_df.to_excel(r'C:\Users\chen\Desktop\R
这段代码中引入了Pandas、NumPy和statsmodels两个模块,用来读取并处理Excel文件中的数据。其中,pd.read_excel()函数用于从指定的Excel文件中读取数据,sheet_name参数表示读取的是第一个表格,header参数表示表格的第一行是标题,index_col参数表示表格的第一列是行索引。
df = pd.read_csv('./part-00000-66a9d65e-cad2-4f62-af22-e9acbec50dbc.c000.csv', low_memory=False) sig_cell_volt = np.array(df.iloc[:1000, 10]) sum_volt = list(np.array(df.iloc[:1000, 6])) # print(sig_cell_volt) all_cell_vot = [] for i in sig_cell_volt: i = i[2:] cell_str = i.split('_') cell_list = [] for t in cell_str: t = float(t)/1000 cell_list.append(t) # print(len(cell_list)) all_cell_vot.append(cell_list) all_cell_vot = np.array(all_cell_vot) # x_data = torch.from_numpy(all_cell_vot) print(all_cell_vot) # sing_vol_df = pd.DataFrame(all_cell_vot) # writer = pd.ExcelWriter('vol.xlsx') # sing_vol_df.to_excel(writer,'sheet1',float_format='%.5f') df1 = pd.read_excel('vol.xlsx') col_name=df1.columns.tolist() col_name.insert(95, '总电压') df1['总电压'] = sum_volt df1.to_excel('piggy22.xlsx')
这段代码首先是在上一个代码段的基础上进行的。在处理完数据后,代码将 all_cell_vot 数组中的数据存储到了名为 sing_vol_df 的 DataFrame 中,并将这个 DataFrame 存储到了一个名为 vol.xlsx 的 Excel 文件中。
接下来,代码又读取了 vol.xlsx 文件,并将 DataFrame 中的列名存储到了名为 col_name 的列表中。然后,通过 insert 方法在 col_name 列表的索引 95 处插入了一个名为“总电压”的列名。接着,代码将 sum_volt 列表中的数据存储到了新添加的“总电压”列中。最后,通过 to_excel 方法将更新后的 DataFrame 存储到了一个名为 piggy22.xlsx 的 Excel 文件中。
阅读全文