选择性搜索算法+非极大值抑制Python实现
时间: 2024-02-01 08:02:44 浏览: 210
基于python的AI五子棋实现(极大极小值搜索和alpha beta剪枝)
5星 · 资源好评率100%
以下是选择性搜索算法和非极大值抑制的Python实现:
选择性搜索算法:
```python
import cv2
import selectivesearch
# 读取图像
image = cv2.imread('image.jpg')
# 运行选择性搜索算法
selective_search = selectivesearch.selective_search(image, scale=500, sigma=0.9, min_size=10)
# 获取候选框
boxes = selective_search[0]
# 打印候选框数量
print("候选框数量:", len(boxes))
# 显示候选框
for box in boxes:
x, y, w, h = box
cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 显示图像
cv2.imshow("Selective Search", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```
非极大值抑制算法:
```python
import numpy as np
def non_max_suppression(boxes, overlap_thresh):
if len(boxes) == 0:
return []
# 提取候选框的坐标和概率
x1 = boxes[:, 0]
y1 = boxes[:, 1]
x2 = boxes[:, 2]
y2 = boxes[:, 3]
scores = boxes[:, 4]
# 计算候选框的面积
area = (x2 - x1 + 1) * (y2 - y1 + 1)
# 根据概率降序排序
idxs = np.argsort(scores)[::-1]
# 保留的候选框列表
keep = []
while len(idxs) > 0:
# 保留当前概率最大的候选框
i = idxs[0]
keep.append(i)
# 计算当前候选框与其他候选框的重叠度
xx1 = np.maximum(x1[i], x1[idxs[1:]])
yy1 = np.maximum(y1[i], y1[idxs[1:]])
xx2 = np.minimum(x2[i], x2[idxs[1:]])
yy2 = np.minimum(y2[i], y2[idxs[1:]])
w = np.maximum(0, xx2 - xx1 + 1)
h = np.maximum(0, yy2 - yy1 + 1)
overlap = (w * h) / area[idxs[1:]]
# 删除重叠度大于阈值的候选框
idxs = np.delete(idxs, np.concatenate(([0], np.where(overlap > overlap_thresh)[0] + 1)))
# 返回保留的候选框
return boxes[keep]
# 假设候选框列表为boxes,重叠度阈值为0.5
boxes = np.array([[10, 10, 50, 50, 0.9], [20, 20, 60, 60, 0.8], [30, 30, 70, 70, 0.7]])
overlap_thresh = 0.5
# 应用非极大值抑制算法
selected_boxes = non_max_suppression(boxes, overlap_thresh)
# 打印保留的候选框
print("保留的候选框:", selected_boxes)
```
阅读全文